DOI QR코드

DOI QR Code

동해에서 직접수열 대역확산 전송에 기반한 장거리 수중음향통신의 해상실험 결과

Sea trial results of long range underwater acoustic communication based on direct sequence spread spectrum transmission in the East Sea

  • 투고 : 2021.05.12
  • 심사 : 2021.07.07
  • 발행 : 2021.07.31

초록

본 논문은 2020년 11월 동해에서 실시한 장거리 수중음향통신의 해상실험 결과를 제시한다. 하나의 이동하는 송신기와 16개의 수직 배열 수신기들을 통해 신호를 수집하였으며, 송신기와 수신기 사이의 거리는 약 20 km정도였다. 실험에 적용된 신호는 기존의 직접수열 대역확산 방식과 각 심볼마다 다수의 순환된 Pseudo Noise(PN) 시퀀스를 중첩함으로써 전송률을 높이는 중첩된 직접수열 대역확산 방식이다. 실험결과 채널 부호화 기법이 적용되지 않은 비부호화 비트 오류율에 있어서 기존의 직접수열 대역확산 방식은 16채널 평균 0.0005로 나타났으며, 중첩된 직접수열대역확산 방식은 0.00124을 보였다.

This paper presents the results of a sea trial for long range underwater acoustic communication conducted in the East Sea in November 2020. Signals were collected through a moving transmitter and 16 vertically arranged receivers, and the range between the transmitter and receiver was about 20 km. The signal in the experiment is a conventional Direct Sequence Spread Spectrum (DSSS) method and a superimposed DSSS method that increases data rate by superimposing of multiple circulated Pseudo Noise (PN) sequences for each symbol. The results show that the uncoded bit error rate averaged over 16 channels to which the channel coding technique was not applied was 0.0005 for the conventional direct sequence spreading method, and was 0.00124 for the superimposed direct sequence spreading method.

키워드

과제정보

본 연구는 국방과학연구소의 연구비 지원(과제번호 : UD200010DD)으로 이루어졌습니다.

참고문헌

  1. M. Stojanovic, "Underwater acoustic communications," Proc. IEEE Electro International, 435-440 (1995).
  2. L. Freitag, M. Stojanovic, S. Singh, and M. Johnson "Analysis of channel effects on direct-sequence and frequency-hopped spread-spectrum acoustic communication," IEEE J. Ocean. Eng, 26, 586-593 (2001). https://doi.org/10.1109/48.972098
  3. F. Qu, L. Yang, and T. C. Yang, "High reliability direct-sequence spread spectrum for underwater acoustic communications," Proc. MTS/IEEE OCEANS Conf. 1-6 (2009).
  4. T. C. Yang and W. Yang, "Low probability of detection underwater acoustic communications using direct-sequence spread spectrum," J. Acoust. Soc. Am. 124, 3633-3647 (2008).
  5. X. Shu, J. Wang, H. Wang, and X. Yang, "Chaotic direct sequence spread spectrum for secure underwater acoustic communication," Appl. Acoust. 104, 57-66 (2016). https://doi.org/10.1016/j.apacoust.2015.10.015
  6. J. W. Han, K. M Kim, Y. J. Yun, H. U. Mun, S. Y. Chun, and K. Son "Sea trial results of the direct sequence spread spectrum underwater acoustic communication in the East Sea" (in Korean), J. Acoust. Soc. Kr. 31, 441-448 (2012). https://doi.org/10.7776/ASK.2012.31.7.441
  7. T. C. Yang and W. Yang, "Performance analysis of direct-sequence spread spectrum underwater acoustic communications with low signal-to-noise ratio input signals," J. Acoust. Soc. Am. 123, 842-855 (2008). https://doi.org/10.1121/1.2828053
  8. J. G. Proakis and M. Salehi, Digital Communications 5th Ed (McGraw Hill, New York, 2008), pp.481-508.
  9. Neptune Sonar, https://www.neptune-sonar.co.uk/products/projectors/t161, (Last viewed May 10, 2021).
  10. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akal, and M. Stevenson, "Spatial diversity in passive time reversal communications," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286
  11. C. U. Baek and J. W. Jung, "An efficient receiver structure based on PN performance in underwater acoustic communication" (in Korean), J. Navig. Port Res, 41, 173-180 (2017). https://doi.org/10.5394/KINPR.2017.41.4.173