• Title/Summary/Keyword: 해저면 반사손실

Search Result 15, Processing Time 0.032 seconds

Frequency Dependence of High-Frequency Bottom Reflection Loss Model (주파수 종속성을 갖는 고주파 해저면 반사손실 모델)

  • 박순식;윤관섭;나정열;석동우;주진용;조진석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.362-369
    • /
    • 2004
  • The High-frequency (30 ∼ 120 ㎑) bottom reflection loss at rough water-sediment interface is affected by the gram size distribution of the sediments. The roughness of the bottom surface is represented by "acoustical roughness. g/sub R/" The grain size of sandy sediments is g/sub R/∼O(1) and the dependence as a function of frequency. We suggest the modified bottom reflection loss model (HYBRL model , HanYang university Bottom Reflection Loss model) that include in the deviation of the reflection loss as a function of the grain size distribution and frequency dependence. And bottom reflection loss model of frequency dependence and deviation of bottom properties is verified by water tank and field experiments.

Seafloor Classification Using Fuzzy Logic (퍼지 이론을 이용한 해저면 분류 기법)

  • 윤관섭;박순식;나정열;석동우;주진용;조진석
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.296-302
    • /
    • 2004
  • Acoustic experiments are performed for a seafloor classification from 19 May to 25 May 2003. The six different sites of bottom composition are settled and the bottom reflection losses with frequencies (30, 50, 80. 100, 120 kHz) are measured. Sediment samples were collected using gravity core and the sample was extracted for grain size analysis. The fuzzy logic is used to classify the seabed. In the fuzzy logic. Bottom 1083 model of frequency dependence is used as the input membership functions and the output membership functions are composed of the Wentworth grain size of the bottom. The possibility of the seafloor classification is verified comparing the inversed mean grain size using fuzzy logic with the results of the coring.

Frequency Dependence of High-frequency Bottom Reflection Loss Measurements (고주파 해저면 반사손실의 주파수 종속성 측정)

  • 박순식;윤관섭;최지웅;나정열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.8
    • /
    • pp.652-659
    • /
    • 2003
  • High-frequency(40∼120 kHz) reflection loss measurements on the water-sandy sediment with a flat interface were conducted in a water tank for various grazing angles. The water tank(5×5×5 m) was filled with a 0.5 m-thick-flat bottom of 0.5ø-mean-grain-size sand. Reflection losses, which were experimentally obtained as a function of grazing angle and frequency, were compared with the forward loss model, APL-UW model (Mourad & Jackson, 1989). For frequencies below 60 kHz, the observed losses well agree with the reflection loss model, however, in cases for frequencies above 70 kHz, the observed losses are greater by 2∼3 dB than the model results. The model calculation, which does not fully account for the vertical scale of roughness due to grain size, produce less bottom losses compared to the observations that correspond to large roughness based on the Rayleigh parameter in the wave scattering theory. In conclusion, for the same grain-size-sediment, as frequencies increase, the grainsize becomes the scale of roughness that could be very large for the frequencies above 70 kHz. Therefore, although the sea bottom was flat, we have to consider the frequency dependence of an effect of roughness within confidential interval of grain size distribution in reflection loss model.

High-Frequency Bottom Loss Measured at Near-Normal Incidence Grazing Angle in Jinhae Bay (진해만에서 측정된 높은 수평입사각에서의 고주파 해저면 반사손실)

  • La, Hyoung-Sul;Park, Chi-Hyung;Cho, Sung-Ho;Choi, Jee-Woong;Na, Jung-Yul;Yoon, Kwan-Seob;Park, Kyung-ju;Park, Joung-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.223-228
    • /
    • 2010
  • High-frequency bottom loss measurements for grazing angle of $82^{\circ}$ in frequency range 17-40 kHz were made in Jinhae bay in the southern part of Korea. Observations of bottom loss showed the strong variation as a function of frequency, which were compared to the predicted values using two-layered sediment reflection model. The geoacoustic parameters including sound speed, density and attenuation coefficient for the second sediment layer were predicted from the empirical relations with the mean grain size obtained from sediment core analysis. The geoacoustic parameters for the surficial sediment layer were inverted using Monte Carlo inversion algorithm. A sensitivity study for the geoacoustic parameters showed that the thickness of surficial sediment layer was most sensitive to the variation of the bottom loss.

Estimation of the sea bottom reflection coefficient using the low frequency source (저주파 음원을 이용한 해저면 반사계수 추정)

  • Choi Jee Woong;Na Jungyul;Oh Suntaek;Yoo Hae Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.287-292
    • /
    • 1999
  • 동해 38도 10분N, 132도 00분E(site 1)과 38도 01분N, 132도 53분E(site2)에서 저주파수를 이용한 해상실험자료를 이용하여 해저면 음파반사 특성을 파악하였다. 음원으로는 한국해양연구소 온누리호에 장착되어 있는 총 11.31l의 부피를 가지는 에어건 array를 사용하였고 수신장치로는 총 56채널로 이루어진 아날로그 스트리머를 사용하였으며, 각 실험위치에서 3번씩 신호를 수신하였다. 관측해역에 대해 eigenray 모델을 이용하여 에어건에서부터 각 채널까지의 eigenray 정보를 파악한 후 해저면 반사계수를 산출하여 Rayleigh reflection 모델과 비교하였다. 비교 결과 Rayleigh reflection 모델은 해저면 반사 손실과 부합하는 것으로 나타났다.

  • PDF

Measurements of mid-frequency transmission loss in shallow waters off the East Sea: Comparison with Rayleigh reflection model and high-frequency bottom loss model (동해 천해환경에서 측정된 중주파수 전달손실 측정: Rayleigh 및 HFBL 모델과의 비교)

  • Lee, Dae Hyeok;Oh, Raegeun;Choi, Jee Woong;Kim, Seongil;Kwon, Hyuckjong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.297-303
    • /
    • 2021
  • When sound waves propagate over long distances in shallow water, measured transmission loss is greater than predicted one using underwater acoustic model with the Rayleigh reflection model due to inhomogeneity of the bottom. Accordingly, the US Navy predicts sound wave propagation by applying the empirical formula-based High Frequency Bottom Loss (HFBL) model. In this study, the measurement and analysis of transmission loss was conducted using mid-frequency (2.3 kHz, 3 kHz) in the shallow water of the East Sea in summer. BELLHOP eigenray tracing output shows that only sound waves with lower grazing angle than the critical angle propagate long distances for several kilometers or more, and the difference between the predicted transmission loss based on the Rayleigh reflection model and the measured transmission loss tend to increase along the propagation range. By comparing the Rayleigh reflection model and the HFBL model at the high grazing angle region, the bottom province, the input value of the HFBL model, is estimated and BELLHOP transmission loss with HFBL model is compared to measured transmission loss. As a result, it agrees well with the measurements of transmission loss.

Derivation of Coherent Reflection Coefficient at Mid and Low Frequency for a Rough Surface (불규칙 경계면에 대한 중저주파수 간섭 반사 계수 유도)

  • Chu, Young-Min;Seong, Woo-Jae;Byun, Sung-Hoon;Kim, Sea-Moon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.174-186
    • /
    • 2009
  • When we apply a propagation model to the ocean with boundaries, we can calculate reflected wave using reflection coefficient suggested by Rayleigh assuming the boundaries are flat. But boundaries in ocean such as sea surface and sea bottom have an irregular rough surface. To calculate the reflection loss for an irregular boundary, it is needed to compute the coherent reflection coefficient based on an experimental formula or scattering theory. In this article, we derive the coherent reflection coefficients for a fluid-fluid interface using perturbation theory, Kirchhoff approximation and small-slope approximation respectively. Based on each formula, we can calculate coherent reflection coefficients for a rough sea surface or sea bottom, and then compare them to the Rayleigh reflection coefficient to analyze the reflection loss for a random rough surface. In general, the coherent reflection coefficient based on small-slope approximation has a wide valid region. Comparing it with the coherent reflection coefficients derived from the Kirchhoff approximation and perturbation theory, we discuss a valid region of them.

Measurements of Mid-frequency Bottom Loss in Shallow Water of the Yellow Sea (서해 천해환경에서의 중주파수 해저면 반사손실 측정)

  • Yoon, Young Geul;Lee, Changil;Choi, Jee Woong;Cho, Sungho;Oh, Suntaek;Jung, Seom-Kyu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.6
    • /
    • pp.423-431
    • /
    • 2015
  • KIOST-HYU joint acoustics experiment was performed on the western shallow water off the Taean peninsula in the Yellow Sea in May 2013. In this paper, mid-frequency (6~16 kHz) bottom loss data measured in a grazing angle range of $17{\sim}60^{\circ}$ are presented and compared to the predictions obtained using a Rayleigh reflection model. The sediment structure of the experimental site was characterized by multi-layered sediment and the components of the surficial sediment consisted of various types of particles with a mean grain size of $5.9{\phi}$. The model predictions obtained using the mean grain size were not in agreement with the measured bottom loss, and those obtained using the grain size of $4{\phi}$, which was estimated by an inversion process, showed a best fit to the measurements. It would be because the standard deviation of the gain-size distribution of surficial sediment is $4.3{\phi}$, which is much larger than those of other areas around the experimental site. Finally, the model predictions obtained using the geoacoustic parameters estimated from the inversion process for the surficial sediment layer and those corresponding to the mean grain size of $1.3{\phi}$ for lower layer are reasonably agreement with the measured bottom loss data.

Experiment and Simulation of Acoustic Detection for the Substitute for Sunken Hazardous and Noxious Substances Using the High Frequency Active Sonar (고주파 능동소나를 이용한 저층 침적 위험유해물질 대체물질 음향 탐지 실험 및 모의)

  • Han, Dong-Gyun;Seo, Him Chan;Choi, Jee Woong;Lee, Moonjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.459-466
    • /
    • 2018
  • Hazardous and Noxious Substances (HNS) are defined as substances that are likely to create a significant impact on human health and marine ecosystem when they are released into the marine environment. Recently, as the volume of HNS transported by ships increases, the rate of leakage accidents also increases. Therefore, research should be conducted to control and monitor sunken materials from the viewpoint of technology development for hazardous material leakage accident response. In this paper, acoustic detection experiments were carried out using HNS substitute materials in order to confirm the possibility of acoustic detection of sunken HNS on the sediment. The castor oil, which has a similar acoustic impedance with chloroform, is used as a substitute. 200 kHz high frequency signals were used to discriminate the reflected signals and measure reflection loss from the interface between water and castor oil. The reflection loss measured is in good agreement with the modeling results, showing a possibility of acoustic detection for sunken HNS.

Long-Range Sound Transmission Characteristics in Shallow-Water Channel with Thermocline (수온약층이 존재하는 천해역 수중음향 채널의 장거리 신호 전달 특성)

  • Byun, Sung-Hoon;Kim, Sea-Moon;Lim, Yong-Kon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.5
    • /
    • pp.273-281
    • /
    • 2014
  • This paper analyzes the effect of a thermocline on the long-range acoustic signal propagation using the experimental data acquired in the shallow water near Jeju island. Temperature and salinity measurement data in Korea Oceanographic Data Center (KODC) show that the seasonal thermocline exists near Jeju island, and, under the thermocline, the bottom loss property strongly affects the long-range propagation of acoustic signal along the down-ward refractive paths. We estimate the bottom loss under the thermocline using experiment data obtained near Jeju island in May, 2013. The result shows that the estimated bottom losses are below 3 dB and the higher level signal is received at the deeper receiver depths. This shows that the acoustic trapping under the thermocline can be a viable long-range signal transmission channel in the shallow water with a thermocline.