DOI QR코드

DOI QR Code

Avaliable analysis of precise positioning using the LX-PPS GNSS permanent stations

LX-PPS GNSS 상시관측소의 정밀측위 활용 가능성 분석

  • Ha, Jihyun (Research Institute of Spatial Information Engineering, Inha University) ;
  • Park, Kwan-Dong (Department of Spatial Information Engineering, Inha University) ;
  • Kim, Hye-In (PP-Solution Inc.)
  • 하지현 (인하대학교 공간정보공학연구소) ;
  • 박관동 (인하대학교 공간정보공학과) ;
  • 김혜인 ((주)피피솔)
  • Received : 2021.02.05
  • Accepted : 2021.06.28
  • Published : 2021.06.30

Abstract

In this paper, we analyzed the possibility of utilizing LX-PPS GNSS permanent stations whose antennas are installed on the building rooftop for the purpose of high-precision GNSS positioning services. We picked 15 pairs of adjacent GNSS permanent stations operated by LX-PPS and NGII, and then produced 3-year-long time series using the high-precision data processing software called GIPSY. Patterns and trends of position estimates were compared and analyzed. Horizontal and vertical deviations including the linear velocities coincide with the well-known crustal deformation rates of the Korean peninsula. We also observed almost the same annual or seasonal patterns from those nearby sites. After detrending the linear velocity, the amplitude and phase of annual signals almost perfectly match each other within the baseline length of 2 km. By subtracting seasonal signals, the RMS and standard deviations in LX-PPS PPGR with respect to NGII KANR are about 1, 2, and 5 mm in the north-south, east-west, and vertical directions, respectively. From this analysis it can be concluded that the rooftop-installed LX-PPS sites show similar level of stability and positioning performance comparable to those ground-mounted NGII stations.

본 논문에서는 LX-PPS 상시관측소를 이용하여 건물 옥상에 설치된 GNSS 상시관측소에 대한 정밀측위 활용 가능성을 분석하였다. 이를 위해 LX-PPS 상시관측소와 가장 인접한 지역에 위치한 국토지리정보원 상시관측소를 선정하였으며, GIPSY를 이용하여 고정밀 처리하여 좌표변동 경향을 상호 비교, 분석하였다. 그 결과 양 기관의 정밀좌표 시계열 모두 한반도 지각변동 속도와 일치하는 수평, 수직 변동경향이 나타났으며, 서로 그 크기와 방향도 매우 유사하게 나타났다. 또한 좌표시계열에서 속도를 제거한 후 두 기관의 상시관측소에서 유사한 크기의 계절신호가 관측되었으며, 이 신호는 서로 다른 지역에 위치한 상시관측소에 비해 2km 이내의 동일 지역에 매우 인접하게 설치된 상시관측소에서 진폭과 위상 모두 매우 비슷하게 나타났다. 계절신호 제거 후 국토지리정보원 좌표를 기준으로 LX-PPS 상시관측소의 좌표 오차를 산출했을 때 RMS와 표준편차는 모두 남북 1mm, 동서 2mm, 수직 5mm로 나타났다. 이와 같이 LX-PPS 상시관측소는 건물 옥상에 설치되어 있음에도 불구하고 지표면에 설치된 국토지리정보원의 상시관측소와 동일한 수준의 높은 측위 성과 달성이 가능하다는 것을 확인할 수 있었다.

Keywords

References

  1. Park KD, Choi WI, Kim HI, Kim MS, Yoon WJ, Kim SH, A Study on the Application of the National Geometric Reference System using the International Terrestrial Reference Frame. National Geographic Information Institute. 11-1613436-000137-01.
  2. Park PH. 2001. GPS analysis of crustal velocities within Korean peninsula and the East Asia [Dissertation]. Yonsei University. p. 34-43.
  3. Seoul Network RTK System. 2020. Status of Yonsan GNSS permanent station[Internet]. [https://gnss.eseoul.go.kr/cors5]. Last accessed 10 Jan 2021.
  4. Shon DH, Kim DS, Park KD. 2015. A Study on GNSS Data Pre-processing for Analyzing Geodetic Effects on Crustal Deformation due to the Earthquake. Journal of the Korean Society for Geospatial Information Science. 23(1):47-54
  5. Ha J. 2013. Analysis of Coordinate shifts of GPS reference stations in South Korea due to the Tohoku-oki earthquake. Journal of Cadastre & Land InformatiX. 43(2):161-172.
  6. Ha J. Kim HH, Kang SG, Jung WS. 2014. The Study on Upgradability of LX GNSS network and Stabilizing. Korea Land and Geospatial InformatiX Corporation. LXSiri 2014-12.
  7. Baek J, Shin YH, Na SH, Shestakov NV, Park PH, Cho S. 2012. Cosesmic and Postseismic Crustal Deformations of the Korean Peninsula caused by the 2011 Mw 9.0 Tohoku Earthquake, Japan, from Global Positioning System Data. Terra Nova. 24(4):295-300. https://doi.org/10.1111/j.1365-3121.2012.01062.x
  8. Blewitt G, Lavallee D, Clarke P, Nurutdinov K. 2001. A New Global Mode of Earth Deformation: Seasonal Cycle Detected. Science. 294(5550):2342-2345. https://doi.org/10.1126/science.1065328
  9. Chanard K, Metois M, Rebischung P, Avouac JP. 2020. A Warning Against Over-interpretation of Seasonal Signals Measured by the Global Navigation Satellite System. Nature Communications. 11(1375):1-4. https://doi.org/10.1038/s41467-019-13993-7
  10. Dong D, Fang P, Bock Y, Cheng MK, Miyazaki S. 2002. Anatomy of Apparent Seasonal Variations from GPS-derived Site Position Time Series. Journal of Geophysical Research. 107(B4):ETG1-16.
  11. Ha J, Park KD, Won J, Heo MB. 2014. Investigations into Co-seismic Deformation and Strain in South Korea following the 2011 Tohoku-oki Earthquake using GPS CORS data. Journal of Civil Engineering. 18(2):634-638.
  12. Hamdy AM, Park PH, Lim HC. 2005. Horizontal Deformation in South Korea from Permanent GPS Network Data 2000-2003. Earth Planets Space. 57(2):77-82. https://doi.org/10.1186/BF03352551
  13. IGS. 2020. IGS site guideline[Internet]. [https://www.igs.org/stations/#site-guidelines]. Last accessed 10 Jan 2021.
  14. Jin S, Park PH. 2006. Strain Accumulation in South Korea Inferred from GPS Measurements. Earth Planets Space. 58(5):529-534. https://doi.org/10.1186/BF03351950
  15. Kim D, Park KD, Ha J, Shon DH, Won J. 2016, Geodetic Analysis of Post-seismic Crustal Deformations Occurring in South Korea due to the Tohoku-oki Earthquake, Journal of Civil Engineering, 20(7):2885-2892.
  16. Li W, vanDam T, Li Z, Shen Y. 2016. Annual Variation Detected by GPS, GRACE and Loading Models. Studia Geophysica et Geodaetica. 60(4):608-621. https://doi.org/10.1007/s11200-016-0205-1
  17. NGS. 2020. NCN Guidelines[Internet]. [https://geodesy.noaa.gov/CORS/Establish_Operate_CORS.shtml]. Last accessed 10 Jan 2021.
  18. Park KD. 2000. Determination of Glacial Isostatic Adjustment Parameters based on Precise Point Positioning using GPS[Dissertation]. University of Texas at Austin. p. 21-41.