DOI QR코드

DOI QR Code

Isolation of a starfish myorelaxant peptide (SMP) isotype from the pyloric caeca of Patiria pectinifera

  • Kubarova, Anastasia (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University) ;
  • Go, Hye-Jin (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University) ;
  • Park, Nam Gyu (Department of Biotechnology, College of Fisheries Sciences, Pukyong National University)
  • Received : 2021.02.18
  • Accepted : 2021.03.30
  • Published : 2021.04.30

Abstract

Peptides are naturally occurring biological molecules that are found in all living organisms. These biologically active peptides play a key role in various biological processes. The aim of this study is the extraction and the purification of bioactive materials that induce relaxation of an apical muscle from the pyloric caeca of Patiria pectinifera. The acidified pyloric caeca extract was partially separated by the solid phase extraction using a stepwise gradient on Sep-Pak C18 cartridge. Among the fractions, materials eluted with 60% methanol/0.1% trifluoroacetic acid was put a thorough of a series of high performance liquid chromatography (HPLC) steps to isolate a neuropeptide with relaxation activity. The purified compound was eluted at 28% acetonitrile in 0.1% trifluoroacetic acid with retention time of 25.8 min on the CAPCELL-PAK C18 reversed-phase column. To determine the molecular weight and the amino acid sequence of the purified peptide, LC-MS and Edman degradation method were used, respectively. The primary structure of the peptide was determined to be FGMGGAYDPLSAGFTD which corresponded to the amino acid sequence of a starfish myorelaxant peptide (SMP) isotype (SMPb) found in the cDNA sequence encoding SMPa and its isotypes. In this study, a muscle relaxant neuropeptide (SMPb) has been isolated from pyloric caeca of starfish P. pectinifera. This is the first report of SMPb isolation on the protein level from P. pectinifera.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT). (No. 2020R1A2C1013471).

References

  1. Anderson JM. Structure and function in the pyloric caeca of Asterias forbesi. Biol Bull Rev. 1953;105:47-61. https://doi.org/10.2307/1538555
  2. Anderson JM. Studies on the cardiac stomach of a starfish, Patiria miniata (Brandt). Biol Bull Rev. 1959;117:185-201. https://doi.org/10.2307/1538899
  3. Anderson JM. Histological studies on the pyloric stomach and its appendages in Oreaster reticulatus (L.) (Asteroidea). Biol Bull Rev. 1979;156:1-19. https://doi.org/10.2307/1540999
  4. Chia FS. Histology of the pyloric caeca and its changes during brooding and starvation in a starfish, Leptasterias hexactis. Biol Bull Rev. 1969;136:185-92. https://doi.org/10.2307/1539812
  5. Davydov PV, Shubravyi OI, Vassetzky SG. The Starfish Asterina pectinifera. In: Dettlaff TA, Vassetzky SG, editors. Animal species for developmental studies. Boston, MA: Springer; 1990. p. 287-311.
  6. Elphick MR. NG peptides: a novel family of neurophysin-associated neuropeptides. Gene. 2010;458:20-6. https://doi.org/10.1016/j.gene.2010.03.004
  7. Elphick MR, Achhala S, Martynyuk N. The evolution and diversity of SALMFamide neuropeptides. PLOS ONE. 2013;8:e59076. https://doi.org/10.1371/journal.pone.0059076
  8. Elphick MR, Newman SJ, Thorndyke MC. Distribution and action of SALMFamide neuropeptides in the starfish Asterias rubens. J Exp Biol. 1995;198:2519-25. https://doi.org/10.1242/jeb.198.12.2519
  9. Elphick MR, Price DA, Lee TD, Thorndyke MC. The SALMFamides: a new family of neuropeptides isolated from an echinoderm. Proc R Soc Lond B. 1991;243:121-7. https://doi.org/10.1098/rspb.1991.0020
  10. Gruber CW. Physiology of invertebrate oxytocin and vasopressin neuropeptides. Exp Physiol. 2014;99:55-61. https://doi.org/10.1113/expphysiol.2013.072561
  11. Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR. Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol. 2008;48:393-423. https://doi.org/10.1146/annurev.pharmtox.48.113006.094812
  12. Ji C, Wu L, Zhao W, Wang S, Lv J. Echinoderms have bilateral tendencies. PLOS ONE. 2012;7:e28978. https://doi.org/10.1371/journal.pone.0028978
  13. Jo MJ. Purification and characterization of neuropeptides from starfish, Asterias amurensis [Ph.D. dissertation]. Busan, Korea: Pukyong National University; 2019.
  14. Kim CH, Go HJ, Oh HY, Elphick MR, Park NG. Identification of evolutionarily conserved residues required for the bioactivity of a pedal peptide/orcokinin-type neuropeptide. Peptides. 2018;103:10-8. https://doi.org/10.1016/j.peptides.2018.03.007
  15. Kim CH, Kim EJ, Go HJ, Oh HY, Lin M, Elphick MR, et al. Identification of a novel starfish neuropeptide that acts as a muscle relaxant. J Neurochem. 2016;137:33-45. https://doi.org/10.1111/jnc.13543
  16. Lin M, Egertova M, Zampronio CG, Jones AM, Elphick MR. Pedal peptide/orcokinin-type neuropeptide signaling in a deuterostome: the anatomy and pharmacology of starfish myorelaxant peptide in Asterias rubens. J Comp Neurol. 2017;525:3890-917. https://doi.org/10.1002/cne.24309
  17. Mah CL, Blake DB. Global diversity and phylogeny of the Asteroidea (Echinodermata). PLOS ONE 2012;7:e35644. https://doi.org/10.1371/journal.pone.0035644
  18. Martindale MQ, Henry JQ. The development of radial and biradial symmetry: the evolution of bilaterality. Am Zool. 1998;38:672-84. https://doi.org/10.1093/icb/38.4.672
  19. Martinez A, Villaro AC, Sesma P. Microscopic study of the pyloric caeca of the starfish Marthasterias glacialis (Echinodermata): finding of endocrine cells. J Morphol. 1989;202:151-64. https://doi.org/10.1002/jmor.1052020203
  20. Merkler DJ. C-terminal amidated peptides: production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity. Enzyme Microb Technol. 1994;16:450-6. https://doi.org/10.1016/0141-0229(94)90014-0
  21. Melarange R, Potton DJ, Thorndyke MC, Elphick MR. SALMFamide neuropeptides cause relaxation and eversion of the cardiac stomach in starfish. Proc R Soc Lond B. 1999;266:1785-9. https://doi.org/10.1098/rspb.1999.0847
  22. Odekunle EA, Semmens DC, Martynyuk N, Tinoco AB, Garewal AK, Patel RR, et al. Ancient role of vasopressin/oxytocin-type neuropeptides as regulators of feeding revealed in an echinoderm. BMC Biol. 2019;17:60. https://doi.org/10.1186/s12915-019-0680-2
  23. Pawson DL. Phylum Echinodermata. Zootaxa. 2007;1668:749-64. https://doi.org/10.11646/zootaxa.1668.1.31
  24. Rowe ML, Elphick MR. The neuropeptide transcriptome of a model echinoderm, the sea urchin Strongylocentrotus purpuratus. Gen Comp Endocrinol. 2012;179:331-44. https://doi.org/10.1016/j.ygcen.2012.09.009
  25. Russo AF. Overview of neuropeptides: awakening the senses? Headache. 2017;57:37-46. https://doi.org/10.1111/head.13084
  26. Semmens DC, Dane RE, Pancholi MR, Slade SE, Scrivens JH, Elphick MR. Discovery of a novel neurophysin-associated neuropeptide that triggers cardiac stomach contraction and retraction in starfish. J Exp Biol. 2013;216:4047-53. https://doi.org/10.1242/jeb.092171
  27. Semmens DC, Mirabeau O, Moghul I, Pancholi MR, Wurm Y, Elphick MR. Transcriptomic identification of starfish neuropeptide precursors yields new insights into neuropeptide evolution. Open Biol. 2016;6:150224. https://doi.org/10.1098/rsob.150224
  28. Smith MK, Wang T, Suwansa-ard S, Motti CA, Elizur A, Zhao M, et al. The neuropeptidome of the crown-of-thorns starfish, Acanthaster planci. J Proteom. 2017;165:61-8. https://doi.org/10.1016/j.jprot.2017.05.026
  29. Stangier J, Hilbich C, Burdzik S, Keller R. Orcokinin: a novel myotropic peptide from the nervous system of the crayfish, Orconectes limosus. Peptides. 1992;13:859-64. https://doi.org/10.1016/0196-9781(92)90041-Z
  30. Tinoco AB, Semmens DC, Patching EC, Gunner EF, Egertova M, Elphick MR. Characterization of NGFFYamide signaling in starfish reveals roles in regulation of feeding behavior and locomotory systems. Front Endocrinol. 2018;9:507. https://doi.org/10.3389/fendo.2018.00507
  31. Wang P, Cui Q, Zhang Y, Wang X, Huang X, Li X, et al. A review of pedal peptide/orcokinin-type neuropeptides. Curr Protein Pept Sci. 2021;22:41-9. https://doi.org/10.2174/1389203721666201109112758