산화물기반 박막트랜지스터 전극용 ITO박막의 제작시 투입 산소 분압 의존성

Dependency of Oxygen Partial Pressure of ITO Films for Electrode of Oxide-based Thin-Film Transistor

  • 김경환 (가천대학교 IT융합대학 전기공학과)
  • 투고 : 2021.05.31
  • 심사 : 2021.06.17
  • 발행 : 2021.06.30

초록

In this study, we investigated the oxygen partial pressure effect of ITO films for electrodes of oxide-based Thin-Film Transistor (TFT). Firstly, we deposited single ITO films on the glass substrate at room temperature. ITO films were prepared at the various partial pressures of oxygen gas 0-7.4% (O2/(Ar+O2)). As increasing oxygen on the process of film deposition, electrical properties were improved and optical transmittance increased in the visible light range (300-800 nm). For the electrode of TFT, we fabricated a TFT device (W/L=1000/200 ㎛) with ITO films as the source and drain electrode on the silicon wafer. Except for the TFT device combined with ITO film prepared at the oxygen partial pressure ratio of 7.4%, We confirmed that TFT devices with ITO films via FTS system operated as a driving device at threshold voltage (Vth) of 4V.

키워드

과제정보

이 논문은 2019년도 가천대학교 교내연구비 지원에 의한 결과임(GCU-2019-0302).

참고문헌

  1. S. Wang, H. Zhang, B. Zhang, Z. Xie, and W. Y. Wong, "Towards high-power-efficiency solution-processed OLEDs: Material and device perspectives", Materials Science and Engineering: R: Reports, Vol. 140, pp. 1-61 (2020).
  2. N. Ibaraki, "a-Si TFT technologies for large-size and high-pixel-density AM-LCDs", Materials Chemistry and Physics, Vol. 43, pp. 220-226. (1996). https://doi.org/10.1016/0254-0584(95)01630-D
  3. A. G. Bispo-Jr, L. F. Saravia, S. A. M. Lima, A. M. Pires, M. R. Davolos, "Recent prospects on phosphorconverted LEDs for lighting, displays, phototherapy, and indoor farming", Journal of Luminescence, Vol. 237, pp. 1-29 (2021).
  4. L. Zhang, J. Wei, K. Zhou, C. Wan, and H. Sun, "Highly transparent IGZO-TFTs uses IGZO source and drain electrodes with a composite insulation layer structure", Optik, Vol. 204, pp. 1-6 (2020).
  5. T.-C. Chang, T.-C. Tsao, P. -H. Tai, S. 0P. Huang, W. -C. Su, and G. -F. Chen, "Flexible low-temperature polycrystalline silicon thin-film transistors", Materials Today Advances, Vol. 5, pp. 1-10 (2020).
  6. H. Hosono, H. Ohta, M. Orita, K. Ueda, and M. Hirano, "Frontier of transparent conductive oxide thin films", Vacuum, Vol. 66, pp. 419-425, (2002). https://doi.org/10.1016/S0042-207X(02)00165-3
  7. H. Hosono, "How we made the IGZO transistor", Nature Nature Electronics, Vol. 1, pp. 428 (2018). https://doi.org/10.1038/s41928-018-0106-0
  8. A. Stadler, "Transparent Conducting Oxides-An Up-ToDate Overview", Materials, Vol. 5, pp. 661-683 (2012). https://doi.org/10.3390/ma5040661
  9. Y. Yasuda, S.-I. Kobayashi, T. Uchida, and Y. Hoshi, "Top-emission organic light emitting diode with indium tin oxide top-electrode films deposited by a low-damage facing-target type sputtering method", Thin Solid Films Vol. 698, pp. 1-6 (2020).
  10. T. Ichihara, S. Nakagawa, and M. Naoe, "Analysis of stray magnetic field at the substrate and effect of applying external magnetic field in facing targets sputtering", Vacuum, 51, pp. 715-718 (1998). https://doi.org/10.1016/S0042-207X(98)00281-4
  11. Y. J. Kim, S. B. Jin, S. I. Kim, C. I. Choi, and J. G. Han, "Effect of oxygen flow rate on ITO thin films deposited by facing targets sputtering", Thin Solid Films, Vol. 518, pp. 6241-6244 (2010). https://doi.org/10.1016/j.tsf.2010.03.041
  12. J. W. Ko, B. Y. Jung, and T. Oh, "Annealing Effect with Various Ambient Conditions of ITO Thin Film", Journal of the Semiconductor & Display Technology, Vol. 14, No. 4, pp. 20-24, (2015).
  13. K. Tominaga, T. Ueda, T. Ao, Ma, Kataoka, and I. Mori, "ITO films prepared by facing target sputtering system", Thin Solid Films, Vol. 281-282, pp. 194-197 (1996). https://doi.org/10.1016/0040-6090(96)08611-7
  14. U. Holzwarth and N. Cibson, "Debye-Scherrer equation", Nature Nanotechnology, Vol. 6, pp. 534, (2011). https://doi.org/10.1038/nnano.2011.145
  15. A. Barua, K. D. Leedy, and R. Jha, "Deep-subthreshold Schottky barrier IGZO TFT for ultra-low-power applications", Solid State Electronics Letters,Vol. 2, pp. 59-66 (2020). https://doi.org/10.1016/j.ssel.2020.10.001