DOI QR코드

DOI QR Code

Reverse Design for Composite Rotor Blade of BO-105 Helicopter

BO-105 헬리콥터 복합재 로터 블레이드 역설계

  • Received : 2021.01.28
  • Accepted : 2021.05.06
  • Published : 2021.07.01

Abstract

Helicopter rotor blade is required to be designed by considering the interacting effects among aerodynamics, flexibility, and controllability. The reverse design allows the structural components to have common characteristics by using the configuration numerics and experimental results. This paper aims to design the composite rotor blade which will feature common characteristics with that of BO-105. The present engineering design procedure is done by dividing the rotor blade into a few sections and composite laminates across the cross section. For each section, variational asymptotic beam sectional analysis (VABS) program is used to evaluate its flapwise, lagwise, and torsion stiffnesses to have discrepancy smaller than certain tolerance. Finally, CAMRAD II is used to predict the stress acting on the rotor blade during the specific flight condition and to check whether the present deign is structurally valid.

회전익 항공기의 로터 블레이드는 공기역학, 구조적 유연성, 제어 가능성 등의 상호작용 효과를 고려한 설계가 필요하다. 역설계는 형상정보 및 실험결과를 통해 공통된 특성을 갖는 구성품을 설계할 때 유용하게 사용될 수 있다. 본 논문에서는 BO-105 헬리콥터의 복합재 로터 블레이드를 선정하여 공통된 특성을 갖도록 역설계하고자 하였다. 이를 위해 로터 블레이드를 여러 구간으로 나누어 복합재료가 단면에 따라 연속적으로 적층될 수 있도록 역설계를 수행하였다. 각 구간에 대해서는 variational asymptotic beam sectional analysis (VABS) 단면해석 프로그램을 사용하여 설계안의 플랩 방향, 래그 방향 및 비틀림 강성값이 실험 결과와 일정 수준 이하의 차이를 갖도록 하였다. 최종으로 CAMRAD II를 통해 특정 비행 조건에서 로터 블레이드에 작용하는 하중을 예측한 후 설계된 블레이드가 구조적으로 유효한지 확인하였다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(21CHTR-C128889-05).

References

  1. Anonymous, "Certification of Transport Category Rotorcraft," AC 29-2C. Change: 7, FAA, February 4, 2016.
  2. Giavotto, V., Borri, M., Mantegazza, P., Ghiringhelli, G., Carmaschi, V., Maffioli, C. and Mussi, F., "Anisotropic Beam Theory and Applications," Computers and Structures, Vol. 16, No. 1-4, 1983, pp. 403~413. https://doi.org/10.1016/0045-7949(83)90179-7
  3. Borri, M. and Merlini, T., "A Large Displacement Formulation for Anisotropic Beam Analysis," Meccanica, Vol. 21, 1986, pp. 30~37. https://doi.org/10.1007/BF01556314
  4. Borri, M., Ghiringhelli, G. L. and Merlini, T., "Linear Analysis of Naturally Curved and Twisted Anisotropic Beams," Composites Engineering, Vol. 2, Issues 5-7, 1992, pp. 433~456. https://doi.org/10.1016/0961-9526(92)90036-6
  5. Hodges, D. H., Atilgan, A. R., Cesnik, C. E. S. and Fulton, M. V., "On a Simplified Strain Energy Function for Geometrically Nonlinear Behaviour of Anisotropic Beams," Composites Engineering, Vol. 2, No. 5-7, 1992, pp. 513~526. https://doi.org/10.1016/0961-9526(92)90040-d
  6. Yu, W., Volovoi, V. V., Hodges, H. and Hong, X., "Validation of the Variational Asymptotic Beam Sectional Analysis," AIAA Journal, Vol. 40, No. 10, 2002.
  7. Yu, W., Hodges, D. H. and Ho, J. C., "Variational Asymptotic Beam Sectional AnalysisAn Updated Version," International Journal of Engineering Science, Vol. 59, 2012, pp. 40~64. https://doi.org/10.1016/j.ijengsci.2012.03.006
  8. Yu, W., "VABS Manual," 2013.
  9. Volvoi, V. V., Hodges, D. H., Cesnik, C. E. S. and Popescu, B., "Assessment of Beam Modeling Methods for Rotor Blade Applications," Mathematical and Computer Modelling, Vol. 33, No. 10-11, 2001, pp. 1099~1112. https://doi.org/10.1016/S0895-7177(00)00302-2
  10. http://www.edison.re.kr
  11. Dhadwal, M. K. and Jung, S. N., "Refined Sectional Analysis with Shear Center Prediction for Nonhomogeneous Anisotropic Beams with Nonuniform Warping," Meccanica, Vol. 51, 2016, pp. 1839~1867. https://doi.org/10.1007/s11012-015-0338-2
  12. Volovoi, V. V., Li, L., Ku, J. and Hodges, D. H., "Multi-level Structural Optimization of Composite Rotor Blades," 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2005.
  13. Li, L., "Structural Design of Composite Rotor Blades with Consideration of Manufacturability, Durability, and Manufacturing Uncertainties," Ph.D. Dissertation of Aerospace Engineering, Georgia Institute of Technology, 2008.
  14. Cesnik, C. E. S., Mok, J., Parikh, A. S. and Shin, S., "Optimization Design Framework for Integrally Twisted Helicopter Blades," 45th AIAA/SME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2004.
  15. Volovoi, V. V., Yoon, S., Lee, C. and Hodges, D. H., "Structural Optimization of Composite Rotor Blades," 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004.
  16. Raja, V. and Jernandes, K. J., "Reverse Engineering: An Industrial Perspective," Springer, 2007.
  17. Crema, L. B., Coppotelli, G. and Scaleia, B. L., "Identification and Updating of AB204 Helicopter Blade F.E. Model by Means of Static and Dynamic Tests," 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2004.
  18. Berdichevskii, V., "On the energy of an elastic rod," Journal of Applied Mathematics and Mechanics, Vol. 45, No. 4, 1981, pp. 518~529. https://doi.org/10.1016/0021-8928(81)90097-6
  19. Bae, J. S. and Jung, S. N., CORBA77_MEMB Manual, https://www.edison.re.kr/web/csd/, 2018.
  20. https://en.wikipedia.org/wiki/MBB_Bo_105#cite_note-eads-1-1
  21. Staley, J. A., "Validation of Rotorcraft Flight Simulation Program through Correlation with Flight Data for Soft-in-plane Hingeless Rotors," USAAMRDD-TR-75-50, 1976.
  22. Anonymous, "Maintenance Manual BO 105," Eurocopter Deutschland GMBH, 2008
  23. Anonymous, "BO 105 CB/CBS Approved Rotorcraft Flight Manual," Eurocopter Deutschland GmbH, 1993.
  24. Anonymous, "Fatigue Evaluation of Rotorcraft Structure," AC 27 MG 11, 2003.
  25. Tian, S., Liu, X. and Yu, W., "PreVABS Manual Version 0.5," 2018.