DOI QR코드

DOI QR Code

Molecular detection of blaVIM, blaBIC, blaKPC, and blaSIM genes from isolated bacteria in retail meats

육류용 고기로부터 분자진단을 이용한 항생제내성 유전자 양상

  • 황유진 (가천대학교 의용생체공학과)
  • Received : 2021.04.13
  • Accepted : 2021.06.04
  • Published : 2021.06.30

Abstract

The purpose of this study was to investigate the ability to treat and prevent infection by multiple Gram-negative bacterial pathogens as a last choice option in the treatment of serious infections in clinical settings. The global spread of extended-spectrum 𝛽-lactamases (ESBLs) and/or carbapenemases in microorganisms are of enormous concern to health services because they are often associated with multi-drug resistance which significantly restricts the antibiotic treatment options. In this study, the antimicrobial resistance profiles of bacteria isolated from South Korean market-derived meat samples were determined by the disc diffusion method. PCR was used to detect the presence of antibiotic resistance genes and ESBL producing genes. In total, we tested 181 isolated colonies from 36 market-derived meat samples. Single PCR and DNA sequencing results revealed that genes blaVIM, blaBIC, blaKPC, and blaSIM were present in the bacteria isolated from retail meat. The bacteria in the meat were separately sequenced and based on alignment, four different bacteria were identified. These findings suggest that bacteria found in retail meats are a reservoir for the spreading of ESBL blaVIM, blaBIC, blaKPC, and blaSIM resistance genes and bacteria strains.

본 연구의 목적은 확장 스펙트럼 𝛽-락타마제(ESBL) 항생제가 그람 음성 세균에 의한 감염을 치료하고 예방하는데 사용하고 있으며 임상에서 심각한 감염을 치료하는데 선택하는 마지막 옵션 역할을 한다. 미생물의 확장 스펙트럼 𝛽-락타마제(ESBL) 및/또는 카르바페네마제(Carbapenemase) 내성에 대한 보고는 전 세계적으로 확산되는 것으로 보고되며 항생제 치료에 많은 제한을 주는 요인으로 다약재 내성과 관련이 있기 때문에 보건 서비스에 큰 관심을 가지고 있다. 본 연구는 국내 시장에서 구매하여 분리한 육류로부터 세균을 분리 동정하여 항생제 저항성 테스트인 디스크 확산법을 사용하여 내성균을 분리 실험하였고, PCR과 DNA 시퀜싱방법을 수행아였다. 결과는 PCR을 수행하여 항생제 내성유전자와 유전자를 생산하는 ESBL의 존재를 검출하고 결과를 얻었다. 총 36개의 샘플 육류로부터 181개의 각각 분리된 세균을 추출하여 실험결과을 얻었다. 결과는 PCR과 DNA 염기서열을 분석하여 항생제내성 유전자로 blaVIM, blaBIC, blaKPC, blaSIM으로 나타났다. 분리한 육류 속의 박테리아는 별도 유전자 서열분석으로 4개의 다른 박테리아가 확인되었다. 이러한 결과는 소매되는 육류에서 발견되는 박테리아에 ESBL 내성유전자인 blaVIM, blaBIC, blaKPC, blaSIM를 가진 박테리아 균주가 있을 수 있으며 이는 특수 확장 스펙트럼 𝛽-락타마제(ESBL) 및/또는 카르바페네마제(Carbapenemase) 내성유전자가 확산될 수 있다는 것을 시사한다.

Keywords

References

  1. K. Bush, Proliferation and significance of clinically relevant β-lactamases, Ann N Y Acad Sci, Vol 1277, No. 1, pp. 84-90, 2013. https://doi.org/10.1111/nyas.12023
  2. J. K. Johnson, G. L. Robinson, L. L. Pineles, A. O. Ajao, L. Zhao, et al., Carbapenem MICs in Escherichia coli and Klebsiella species Producing Extended-Spectrum β-Lactamases in Critical Care Patients from 2001 to 2009, Antimicrob Agents Chemother, Vol 61, No. 4, pp. e01718-01716, 2017. https://doi.org/10.1128/AAC.01718-16
  3. B. Guerra, J. Fischer, R. Helmuth, An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds, Vet Microbiol, Vol 171, No. 3, pp. 290-297, 2014. https://doi.org/10.1016/j.vetmic.2014.02.001
  4. P. Nordmann, L. Dortet, L. Poirel, Carbapenem resistancein Enterobacteriaceae: here is the storm!, Trends Mol Med, Vol 18, No. 5, pp. 263-272, 2012. https://doi.org/10.1016/j.molmed.2012.03.003
  5. R. A. Bonomo, E. M. Burd, J. Conly, B. M. Limbago, L. Poirel, et al., Carbapenemase-Producing Organisms: A Global Scourge, Clin Infect Dis, Vol 66, No. 8, pp.1290-1297, 2018. https://doi.org/10.1093/cid/cix893
  6. L. Poirel, T. R. Walsh, V. Cuvillier, P. Nordmann, Multiplex PCR for detection of acquired carbapenemase genes, Diagn Microbiol Infect Dis, Vol 70, No. 1, pp. 119-123, 2011. https://doi.org/10.1016/j.diagmicrobio.2010.12.002
  7. P. Nordmann, L. Poirel, The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide, Clin Microbiol Infect, Vol 20, No. 9, pp. 821-830, 2014. https://doi.org/10.1111/1469-0691.12719
  8. H. W. Stokes, M. R. Gillings, Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens, FEMS Microbiol Rev, Vol 35, 790-819, 2011. https://doi.org/10.1111/j.1574-6976.2011.00273.x
  9. B. W. Shaheen, R. Nayak, D. M. Boothe, Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States, Antimicrob Agents Chemother, Vol 57, 2902-2903, 2013. https://doi.org/10.1128/AAC.02028-12
  10. N. Woodford, D. W. Wareham, B. Guerra, C. Teale, Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making?, Journal of Antimicrobial Chemotherapy, Vol 69, 287-291, 2014. https://doi.org/10.1093/jac/dkt392
  11. P. A. Wayne, Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing, 23th ed, 2013
  12. Y. S. Mun, Y. J. Hwang, Novel spa and Multi-Locus Sequence Types (MLST) of Staphylococcus aureus Samples Isolated from Clinical Specimens in Korean, Antibiotics (Basel), Vol 8, No. 4, 202, 2019. https://doi.org/10.3390/antibiotics8040202
  13. M. J. Ellington, J. Kistler, D. M. Livermore, N. Woodford, Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases, J Antimicrob Chemother, Vol 59, 321-322, 2007. https://doi.org/10.1093/jac/dkl481
  14. L. Poirel, T. R. Walsh, V. Cuvillier, P. Nordmann, Multiplex PCR for detection of acquired carbapenemase genes, Diagn Microbiol Infect Dis, Vol 70, No. 1, 119-23, 2011. https://doi.org/10.1016/j.diagmicrobio.2010.12.002
  15. J. Fischer, L. Rodriguez, S. Schmoger, et al., Escherichia coli producing VIM-1 carbapenemase isolated on a pig farm, J Antimicrob Chemother, Vol 67, 1793-5, 2012. https://doi.org/10.1093/jac/dks108
  16. J. Fischer, I. Rodriguez, S. Schmoger, et al., Salmonella enterica subsp. enterica producing VIM-1 carbapenemase isolated from livestock farms, J Antimicrob Chemother, Vol 68, 478-80, 2013. https://doi.org/10.1093/jac/dks393
  17. L. Chen, B. Mathema, K. D. Chavda, F. R. DeLeo, R. A. Bonomo, et al., Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding, Trends Microbiol, Vol 22, No. 12, 686-96, 2014. https://doi.org/10.1016/j.tim.2014.09.003
  18. S. N. Richter, I. Frasson, C. Bergo, S. Parisi, A. Cavallaro, et al., Transfer of KPC-2 Carbapenemase from Klebsiella pneumoniae to Escherichia coli in a patient: first case in Europe, J Clin Microbiol, Vol 49, No. 5, 2040-2, 2011. https://doi.org/10.1128/JCM.00133-11
  19. F. Gona, F. Barbera, A. C. Pasquariello, P. Grossi, B. Gridelli, et al., In vivo multiclonal transfer of bla(KPC-3) from Klebsiella pneumoniae to Escherichia coli in surgery patients, Clin Microbiol Infect, Vol 20, No. 10, O633-5, 2014. https://doi.org/10.1111/1469-0691.12577
  20. B. J. Morrison, J. E. Rubin, Carbapenemase producing bacteria in the food supply escaping detection, PLoS One, Vol 10, No. 5, e0126717, 2015. https://doi.org/10.1371/journal.pone.0126717