Browse > Article
http://dx.doi.org/10.5762/KAIS.2021.22.6.413

Molecular detection of blaVIM, blaBIC, blaKPC, and blaSIM genes from isolated bacteria in retail meats  

Hwang, You Jin (Dept. of Biomedical Engineering, Gachon University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.22, no.6, 2021 , pp. 413-419 More about this Journal
Abstract
The purpose of this study was to investigate the ability to treat and prevent infection by multiple Gram-negative bacterial pathogens as a last choice option in the treatment of serious infections in clinical settings. The global spread of extended-spectrum 𝛽-lactamases (ESBLs) and/or carbapenemases in microorganisms are of enormous concern to health services because they are often associated with multi-drug resistance which significantly restricts the antibiotic treatment options. In this study, the antimicrobial resistance profiles of bacteria isolated from South Korean market-derived meat samples were determined by the disc diffusion method. PCR was used to detect the presence of antibiotic resistance genes and ESBL producing genes. In total, we tested 181 isolated colonies from 36 market-derived meat samples. Single PCR and DNA sequencing results revealed that genes blaVIM, blaBIC, blaKPC, and blaSIM were present in the bacteria isolated from retail meat. The bacteria in the meat were separately sequenced and based on alignment, four different bacteria were identified. These findings suggest that bacteria found in retail meats are a reservoir for the spreading of ESBL blaVIM, blaBIC, blaKPC, and blaSIM resistance genes and bacteria strains.
Keywords
Carbapenemase; Retail Meats; Extended-Spectrum ${\beta}$-lactamases (ESBLs); Multi-Drug Resistance (MDR); Antimicrobial Susceptibility;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Woodford, D. W. Wareham, B. Guerra, C. Teale, Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making?, Journal of Antimicrobial Chemotherapy, Vol 69, 287-291, 2014. https://doi.org/10.1093/jac/dkt392   DOI
2 B. Guerra, J. Fischer, R. Helmuth, An emerging public health problem: acquired carbapenemase-producing microorganisms are present in food-producing animals, their environment, companion animals and wild birds, Vet Microbiol, Vol 171, No. 3, pp. 290-297, 2014. https://doi.org/10.1016/j.vetmic.2014.02.001   DOI
3 R. A. Bonomo, E. M. Burd, J. Conly, B. M. Limbago, L. Poirel, et al., Carbapenemase-Producing Organisms: A Global Scourge, Clin Infect Dis, Vol 66, No. 8, pp.1290-1297, 2018. https://doi.org/10.1093/cid/cix893   DOI
4 L. Poirel, T. R. Walsh, V. Cuvillier, P. Nordmann, Multiplex PCR for detection of acquired carbapenemase genes, Diagn Microbiol Infect Dis, Vol 70, No. 1, pp. 119-123, 2011. https://doi.org/10.1016/j.diagmicrobio.2010.12.002   DOI
5 J. K. Johnson, G. L. Robinson, L. L. Pineles, A. O. Ajao, L. Zhao, et al., Carbapenem MICs in Escherichia coli and Klebsiella species Producing Extended-Spectrum β-Lactamases in Critical Care Patients from 2001 to 2009, Antimicrob Agents Chemother, Vol 61, No. 4, pp. e01718-01716, 2017. https://doi.org/10.1128/AAC.01718-16   DOI
6 L. Chen, B. Mathema, K. D. Chavda, F. R. DeLeo, R. A. Bonomo, et al., Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding, Trends Microbiol, Vol 22, No. 12, 686-96, 2014. https://doi.org/10.1016/j.tim.2014.09.003   DOI
7 H. W. Stokes, M. R. Gillings, Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens, FEMS Microbiol Rev, Vol 35, 790-819, 2011. https://doi.org/10.1111/j.1574-6976.2011.00273.x   DOI
8 B. W. Shaheen, R. Nayak, D. M. Boothe, Emergence of a New Delhi metallo-β-lactamase (NDM-1)-encoding gene in clinical Escherichia coli isolates recovered from companion animals in the United States, Antimicrob Agents Chemother, Vol 57, 2902-2903, 2013. https://doi.org/10.1128/AAC.02028-12   DOI
9 B. J. Morrison, J. E. Rubin, Carbapenemase producing bacteria in the food supply escaping detection, PLoS One, Vol 10, No. 5, e0126717, 2015. https://doi.org/10.1371/journal.pone.0126717   DOI
10 J. Fischer, I. Rodriguez, S. Schmoger, et al., Salmonella enterica subsp. enterica producing VIM-1 carbapenemase isolated from livestock farms, J Antimicrob Chemother, Vol 68, 478-80, 2013. https://doi.org/10.1093/jac/dks393   DOI
11 Y. S. Mun, Y. J. Hwang, Novel spa and Multi-Locus Sequence Types (MLST) of Staphylococcus aureus Samples Isolated from Clinical Specimens in Korean, Antibiotics (Basel), Vol 8, No. 4, 202, 2019. https://doi.org/10.3390/antibiotics8040202   DOI
12 F. Gona, F. Barbera, A. C. Pasquariello, P. Grossi, B. Gridelli, et al., In vivo multiclonal transfer of bla(KPC-3) from Klebsiella pneumoniae to Escherichia coli in surgery patients, Clin Microbiol Infect, Vol 20, No. 10, O633-5, 2014. https://doi.org/10.1111/1469-0691.12577   DOI
13 K. Bush, Proliferation and significance of clinically relevant β-lactamases, Ann N Y Acad Sci, Vol 1277, No. 1, pp. 84-90, 2013. https://doi.org/10.1111/nyas.12023   DOI
14 P. Nordmann, L. Dortet, L. Poirel, Carbapenem resistancein Enterobacteriaceae: here is the storm!, Trends Mol Med, Vol 18, No. 5, pp. 263-272, 2012. https://doi.org/10.1016/j.molmed.2012.03.003   DOI
15 P. Nordmann, L. Poirel, The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide, Clin Microbiol Infect, Vol 20, No. 9, pp. 821-830, 2014. https://doi.org/10.1111/1469-0691.12719   DOI
16 P. A. Wayne, Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing, 23th ed, 2013
17 M. J. Ellington, J. Kistler, D. M. Livermore, N. Woodford, Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases, J Antimicrob Chemother, Vol 59, 321-322, 2007. https://doi.org/10.1093/jac/dkl481   DOI
18 L. Poirel, T. R. Walsh, V. Cuvillier, P. Nordmann, Multiplex PCR for detection of acquired carbapenemase genes, Diagn Microbiol Infect Dis, Vol 70, No. 1, 119-23, 2011. https://doi.org/10.1016/j.diagmicrobio.2010.12.002   DOI
19 J. Fischer, L. Rodriguez, S. Schmoger, et al., Escherichia coli producing VIM-1 carbapenemase isolated on a pig farm, J Antimicrob Chemother, Vol 67, 1793-5, 2012. https://doi.org/10.1093/jac/dks108   DOI
20 S. N. Richter, I. Frasson, C. Bergo, S. Parisi, A. Cavallaro, et al., Transfer of KPC-2 Carbapenemase from Klebsiella pneumoniae to Escherichia coli in a patient: first case in Europe, J Clin Microbiol, Vol 49, No. 5, 2040-2, 2011. https://doi.org/10.1128/JCM.00133-11   DOI