DOI QR코드

DOI QR Code

Differential Sensitivity of Wild-Type and BRAF-Mutated Cells to Combined BRAF and Autophagy Inhibition

  • Yeom, Hojin (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Hwang, Sung-Hee (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University) ;
  • Han, Byeal-I (Institute for New Drug Development, Incheon National University) ;
  • Lee, Michael (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
  • Received : 2020.11.09
  • Accepted : 2021.01.19
  • Published : 2021.07.01

Abstract

BRAF inhibitors are insufficient monotherapies for BRAF-mutated cancer; therefore, we investigated which inhibitory pathway would yield the most effective therapeutic approach when targeted in combination with BRAF inhibition. The oncogenic BRAF inhibitor, PLX4720, increased basal autophagic flux in BRAF-mutated cells compared to wild-type (WT) BRAF cells. Interestingly, early autophagy inhibition improved the effectiveness of PLX4720 regardless of BRAF mutation, whereas late autophagy inhibition did not. Although ATG5 knockout led to PLX4720 resistance in both WT and BRAF-mutated cells, the MEK inhibitor trametinib exhibited a synergistic effect on PLX4720 sensitivity in WT BRAF cells but not in BRAF-mutated cells. Conversely, the prolonged inhibition of endoplasmic reticulum (ER) stress reduced basal autophagy in BRAF-mutated cells, thereby increasing PLX4720 sensitivity. Taken together, our results suggest that the combined inhibition of ER stress and BRAF may simultaneously suppress both pro-survival ER stress and autophagy, and may therefore be suitable for treatment of BRAF-mutated tumors whose autophagy is increased by chronic ER stress. Similarly, for WT BRAF tumors, therapies targeting MEK signaling may be a more effective treatment strategy. Together, this study presents a rational combination treatment strategy to improve the efficacy of BRAF inhibitors depending on BRAF mutation status.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT (MIST) (NRF-2019R1F1A1048733) and by the Incheon National University Research Grant in 2019.

References

  1. Ahn, J. H. and Lee, M. (2013) Autophagy-dependent survival of mutant B-Raf melanoma cells selected for resistance to apoptosis induced by inhibitors against oncogenic B-Raf. Biomol. Ther. (Seoul) 21, 114-120. https://doi.org/10.4062/biomolther.2013.012
  2. Algazi, A. P., Othus, M., Daud, A. I., Lo, R. S., Mehnert, J. M., Truong, T. G., Conry, R., Kendra, K., Doolittle, G. C., Clark, J. I., Messino, M. J., Moore, D. F., Jr., Lao, C., Faller, B. A., Govindarajan, R., Harker-Murray, A. H., Dreisbach, L., Moon, J., Grossmann, K. F. and Ribas, A. (2020) Continuous versus intermittent BRAF and MEK inhibition in patients with BRAF-mutated melanoma: a randomized phase 2 trial. Nat. Med. 26, 1564-1568. https://doi.org/10.1038/s41591-020-1060-8
  3. Cantwell-Dorris, E. R., O'Leary, J. J. and Sheils, O. M. (2011) BRAFV600E: implications for carcinogenesis and molecular therapy. Mol. Cancer Ther. 10, 385-394. https://doi.org/10.1158/1535-7163.MCT-10-0799
  4. Cheng, L., Lopez-Beltran, A., Massari, F., MacLennan, G. T. and Montironi, R. (2018) Molecular testing for BRAF mutations to inform melanoma treatment decisions: a move toward precision medicine. Mod. Pathol. 31, 24-38. https://doi.org/10.1038/modpathol.2017.104
  5. Choi, K. S. (2012) Autophagy and cancer. Exp. Mol. Med. 44, 109-120. https://doi.org/10.3858/emm.2012.44.2.033
  6. Chou, T. C. (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 70, 440-446. https://doi.org/10.1158/0008-5472.CAN-09-1947
  7. Corazzari, M., Fimia, G. M., Lovat, P. and Piacentini, M. (2013) Why is autophagy important for melanoma? Molecular mechanisms and therapeutic implications. Semin. Cancer Biol. 23, 337-343. https://doi.org/10.1016/j.semcancer.2013.07.001
  8. Davies, H., Bignell, G., Cox, C., Stephens, P., Edkins, S., Clegg, S., Teague, J., Woffendin, H., Garnett, M. J., Bottomley, W., Davis, N., Dicks, E., Ewing, R., Floyd, Y., Gray, K., Hall, S., Hawes, R., Hughes, J., Kosmidou, V., Menzies, A., Mould, C., Parker, A., Stevens, C., Watt, S., Hooper, S., Wilson, R., Jayatilake, H., Gusterson, B. A., Cooper, C., Shipley, J., Hargrave, D., Pritchard-Jones, K., Maitland, N., Chenevix-Trench, G., Riggins, G. J., Bigner, D. D., Palmieri, G., Cossu, A., Flanagan, A., Nicholson, A., Ho, J. W., Leung, S. Y., Yuen, S. T., Weber, B. L., Seigler, H. F., Darrow, T. L., Paterson, H., Marais, R., Marshall, C. J., Wooster, R., Stratton, M. R. and Futreal, P. A. (2002) Mutations of the B-Raf gene in human cancer. Nature 417, 949-954. https://doi.org/10.1038/nature00766
  9. Dinter, L., Karitzky, P., Kaeubler, T., Niessner, H., Wanke, I., Beissert, S., Meier, F. and Westphal, D. (2019) BRAF/MEK inhibitors induce potent ER stress - Enforced apoptosis in BRAFwt/NRASmut melanoma cells - Insights into mode of action and resistance mechanisms. In: Proceedings of the 16th International Congress of the Society for Melanoma Research, p. 102, 2019 Nov 20-21. The Society for Melanoma Research, Salt Lake City, UT, USA.
  10. Egan, D. F., Chun, M. G., Vamos, M., Zou, H., Rong, J., Miller, C. J., Lou, H. J., Raveendra-Panickar, D., Yang, C. C., Sheffler, D. J., Teriete, P., Asara, J. M., Turk, B. E., Cosford, N. D. and Shaw, R. J. (2015) Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol. Cell 59, 285-297. https://doi.org/10.1016/j.molcel.2015.05.031
  11. Eisen, T., Ahmad, T., Flaherty, K. T., Gore, M., Kaye, S., Marais, R., Gibbens, I., Hackett, S., James, M., Schuchter, L. M., Nathanson, K. L., Xia, C., Simantov, R., Schwartz, B., Poulin-Costello, M., O'Dwyer, P. J. and Ratain, M. J. (2006) Sorafenib in advanced melanoma: a Phase II randomised discontinuation trial analysis. Br. J. Cancer 95, 581-586. https://doi.org/10.1038/sj.bjc.6603291
  12. Hatzivassiliou, G., Song, K., Yen, I., Brandhuber, B. J., Anderson, D. J., Alvarado, R., Ludlam, M. J., Stokoe, D., Gloor, S. L., Vigers, G., Morales, T., Aliagas, I., Liu, B., Sideris, S., Hoeflich, K. P., Jaiswal, B. S., Seshagiri, S., Koeppen, H., Belvin, M., Friedman, L. S. and Malek, S. (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464, 431-435. https://doi.org/10.1038/nature08833
  13. Holderfield, M., Deuker, M. M., McCormick, F. and McMahon, M. (2014) Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455-467. https://doi.org/10.1038/nrc3760
  14. Hwang, S. H., Han, B. I. and Lee, M. (2018) Knockout of ATG5 leads to malignant cell transformation and resistance to Src family kinase inhibitor PP2. J. Cell. Physiol. 233, 506-515. https://doi.org/10.1002/jcp.25912
  15. Ichimiya, T., Yamakawa, T., Hirano, T., Yokoyama, Y., Hayashi, Y., Hirayama, D., Wagatsuma, K., Itoi, T. and Nakase, H. (2020) Autophagy and autophagy-related diseases: a review. Int. J. Mol. Sci. 21, 8974. https://doi.org/10.3390/ijms21238974
  16. Kim, N. Y., Han, B. I. and Lee, M. (2016) Cytoprotective role of autophagy against BH3 mimetic gossypol in ATG5 knockout cells generated by CRISPR-Cas9 endonuclease. Cancer Lett. 370, 19-26. https://doi.org/10.1016/j.canlet.2015.10.008
  17. Kimura, S., Noda, T. and Yoshimori, T. (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3, 452-460. https://doi.org/10.4161/auto.4451
  18. Kinsey, C. G., Camolotto, S. A., Boespflug, A. M., Guillen, K. P., Foth, M., Truong, A., Schuman, S. S., Shea, J. E., Seipp, M. T., Yap, J. T., Burrell, L. D., Lum, D. H., Whisenant, J. R., Gilcrease, G. W. r., Cavalieri, C. C., Rehbein, K. M., Cutler, S. L., Affolter, K. E., Welm, A. L., Welm, B. E., Scaife, C. L., Snyder, E. L. and McMahon, M. (2019) Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers. Nat. Med. 25, 620-627. https://doi.org/10.1038/s41591-019-0367-9
  19. Kouraklis, G. and Theocharis, S. (2006) Histone deacetylase inhibitors: a novel target of anticancer therapy (review). Oncol. Rep. 15, 489-494.
  20. Lai, F., Guo, S. T., Jin, L., Jiang, C. C., Wang, C. Y., Croft, A., Chi, M. N., Tseng, H. Y., Farrelly, M., Atmadibrata, B., Norman, J., Liu, T., Hersey, P. and Zhang, X. D. (2013) Cotargeting histone deacetylases and oncogenic BRAF synergistically kills human melanoma cells by necrosis independently of RIPK1 and RIPK3. Cell Death Dis. 4, e655. https://doi.org/10.1038/cddis.2013.192
  21. Levy, J. M., Thompson, J. C., Griesinger, A. M., Amani, V., Donson, A. M., Birks, D. K., Morgan, M. J., Mirsky, D. M., Handler, M. H., Foreman, N. K. and Thorburn, A. (2014) Autophagy inhibition improves chemosensitivity in BRAF(V600E) brain tumors. Cancer Discov. 4, 773-780. https://doi.org/10.1158/2159-8290.CD-14-0049
  22. Li, S., Song, Y., Quach, C., Guo, H., Jang, G. B., Maazi, H., Zhao, S., Sands, N. A., Liu, Q., In, G. K., Peng, D., Yuan, W., Machida, K., Yu, M., Akbari, O., Hagiya, A., Yang, Y., Punj, V., Tang, L. and Liang, C. (2019) Transcriptional regulation of autophagy-lysosomal function in BRAF-driven melanoma progression and chemoresistance. Nat. Commun. 10, 1693. https://doi.org/10.1038/s41467-019-09634-8
  23. Lito, P., Rosen, N. and Solit, D. B. (2013) Tumor adaptation and resistance to RAF inhibitors. Nat. Med. 19, 1401-1409. https://doi.org/10.1038/nm.3392
  24. Liu, H., He, Z. and Simon, H. U. (2014) Autophagy suppresses melanoma tumorigenesis by inducing senescence. Autophagy 10, 372-373. https://doi.org/10.4161/auto.27163
  25. Luebker, S. A. and Koepsell, S. A. (2019) Diverse mechanisms of BRAF inhibitor resistance in melanoma identified in clinical and preclinical studies. Front. Oncol. 9, 268. https://doi.org/10.3389/fonc.2019.00268
  26. Ma, X. H., Piao, S. F., Dey, S., McAfee, Q., Karakousis, G., Villanueva, J., Hart, L. S., Levi, S., Hu, J., Zhang, G., Lazova, R., Klump, V., Pawelek, J. M., Xu, X., Xu, W., Schuchter, L. M., Davies, M. A., Herlyn, M., Winkler, J., Koumenis, C. and Amaravadi, R. K. (2014) Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. J. Clin. Invest. 124, 1406-1417. https://doi.org/10.1172/JCI70454
  27. Mulcahy Levy, J. M., Zahedi, S., Griesinger, A. M., Morin, A., Davies, K. D., Aisner, D. L., Kleinschmidt-DeMasters, B. K., Fitzwalter, B. E., Goodall, M. L., Thorburn, J., Amani, V., Donson, A. M., Birks, D. K., Mirsky, D. M., Hankinson, T. C., Handler, M. H., Green, A. L., Vibhakar, R., Foreman, N. K. and Thorburn, A. (2017) Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. eLife 6, e19671. https://doi.org/10.7554/elife.19671
  28. Piao, S. and Amaravadi, R. K. (2016) Targeting the lysosome in cancer. Ann. N. Y. Acad. Sci. 1371, 45-54. https://doi.org/10.1111/nyas.12953
  29. Pisapia, P., Pepe, F., Iaccarino, A., Sgariglia, R., Nacchio, M., Russo, G., Gragnano, G., Malapelle, U. and Troncone, G. (2020) BRAF: a two-faced Janus. Cells 9, 2549. https://doi.org/10.3390/cells9122549
  30. Poklepovic, A. and Gewirtz, D. A. (2014) Outcome of early clinical trials of the combination of hydroxychloroquine with chemotherapy in cancer. Autophagy 10, 1478-1480. https://doi.org/10.4161/auto.29428
  31. Poulikakos, P. I., Zhang, C., Bollag, G., Shokat, K. M. and Rosen, N. (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464, 427-430. https://doi.org/10.1038/nature08902
  32. Rather, R. A., Bhagat, M. and Singh, S. K. (2020) Oncogenic BRAF, endoplasmic reticulum stress, and autophagy: crosstalk and therapeutic targets in cutaneous melanoma. Mutat. Res. 785, 108321. https://doi.org/10.1016/j.mrrev.2020.108321
  33. Settembre, C., Di Malta, C., Polito, V. A., Garcia Arencibia, M., Vetrini, F., Erdin, S., Erdin, S. U., Huynh, T., Medina, D., Colella, P., Sardiello, M., Rubinsztein, D. C. and Ballabio, A. (2011) TFEB links autophagy to lysosomal biogenesis. Science 332, 1429-1433. https://doi.org/10.1126/science.1204592
  34. Settembre, C., Zoncu, R., Medina, D. L., Vetrini, F., Erdin, S., Erdin, S., Huynh, T., Ferron, M., Karsenty, G., Vellard, M. C., Facchinetti, V., Sabatini, D. M. and Ballabio, A. (2012) A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095-1108. https://doi.org/10.1038/emboj.2012.32
  35. Sullivan, R. J., Hollebecque, A., Flaherty, K. T., Shapiro, G. I., Ahnert, J. R., Millward, M. J., Zhang, W., Gao, L., Sykes, A., Willard, M. D., Yu, D., Schade, A. E., Crowe, K., Flynn, D. L., Kaufman, M. D., Henry, J. R., Peng, S. B., Benhadji, K. A., Conti, I., Gordon, M. S., Tiu, R. V. and Hong, D. S. (2020) A phase I study of LY3009120, a pan-RAF inhibitor, in patients with advanced or metastatic cancer. Mol. Cancer Ther. 19, 460-467. https://doi.org/10.1158/1535-7163.mct-19-0681
  36. Tsai, J., Lee, J. T., Wang, W., Zhang, J., Cho, H., Mamo, S., Bremer, R., Gillette, S., Kong, J., Haass, N. K., Sproesser, K., Li, L., Smalley, K. S., Fong, D., Zhu, Y. L., Marimuthu, A., Nguyen, H., Lam, B., Liu, J., Cheung, I., Rice, J., Suzuki, Y., Luu, C., Settachatgul, C., Shellooe, R., Cantwell, J., Kim, S. H., Schlessinger, J., Zhang, K. Y., West, B. L., Powell, B., Habets, G., Zhang, C., Ibrahim, P. N., Hirth, P., Artis, D. R., Herlyn, M. and Bollag, G. (2008) Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent anti-melanoma activity. Proc. Natl. Acad. Sci. U.S.A. 105, 3041-3046. https://doi.org/10.1073/pnas.0711741105
  37. Wilhelm, S. M., Carter, C., Tang, L., Wilkie, D., McNabola, A., Rong, H., Chen, C., Zhang, X., Vincent, P., McHugh, M., Cao, Y., Shujath, J., Gawlak, S., Eveleigh, D., Rowley, B., Liu, L., Adnane, L., Lynch, M., Auclair, D., Taylor, I., Gedrich, R., Voznesensky, A., Riedl, B., Post, L. E., Bollag, G. and Trail, P. A. (2004) BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 64, 7099-7109. https://doi.org/10.1158/0008-5472.CAN-04-1443
  38. Xie, X., Koh, J. Y., Price, S., White, E. and Mehnert, J. M. (2015) Atg7 overcomes senescence and promotes growth of BrafV600E-driven melanoma. Cancer Discov. 5, 410-423. https://doi.org/10.1158/2159-8290.CD-14-1473
  39. Yang, A., Rajeshkumar, N. V., Wang, X., Yabuuchi, S., Alexander, B. M., Chu, G. C., Von Hoff, D. D., Maitra, A. and Kimmelman, A. C. (2014) Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Discov. 4, 905-913. https://doi.org/10.1158/2159-8290.CD-14-0362
  40. Zahedi, S., Fitzwalter, B. E., Morin, A., Grob, S., Desmarais, M., Nellan, A., Green, A. L., Vibhakar, R., Hankinson, T. C., Foreman, N. K. and Mulcahy Levy, J. M. (2019) Effect of early-stage autophagy inhibition in BRAFV600E autophagy-dependent brain tumor cells. Cell Death Dis. 10, 679. https://doi.org/10.1038/s41419-019-1880-y
  41. Zhang, Z., Singh, R. and Aschner, M. (2016) Methods for the detection of autophagy in mammalian cells. Curr. Protoc. Toxicol. 69, 20.12.1-20.12.26.
  42. Zhitomirsky, B., Yunaev, A., Kreiserman, R., Kaplan, A., Stark, M. and Assaraf, Y. G. (2018) Lysosomotropic drugs activate TFEB via lysosomal membrane fluidization and consequent inhibition of mTORC1 activity. Cell Death Dis. 9, 1191. https://doi.org/10.1038/s41419-018-1227-0