DOI QR코드

DOI QR Code

4-CMTB Ameliorates Ovalbumin-Induced Allergic Asthma through FFA2 Activation in Mice

  • Lee, Ju-Hyun (Laboratory of Pharmacology, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University) ;
  • Im, Dong-Soon (Laboratory of Pharmacology, College of Pharmacy, and Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University)
  • Received : 2020.10.08
  • Accepted : 2021.03.23
  • Published : 2021.07.01

Abstract

Free fatty acid receptor 2 (FFA2, also known as GPR43), a G-protein-coupled receptor, has been known to recognize short-chain fatty acids and regulate inflammatory responses. FFA2 gene deficiency exacerbated disease states in several models of inflammatory conditions including asthma. However, in vivo efficacy of FFA2 agonists has not been tested in allergic asthma. Thus, we investigated effect of 4-chloro-α-(1-methylethyl)-N-2-thiazoylylbenzeneacetanilide (4-CMTB), a FFA2 agonist, on antigen-induced degranulation in RBL-2H3 cells and ovalbumin-induced allergic asthma in BALB/c mice. Treatment of 4-CMTB inhibited the antigen-induced degranulation concentration-dependently. Administration of 4-CMTB decreased the immune cell numbers in the bronchoalveolar lavage fluid and suppressed the expression of inflammatory Th2 cytokines (IL-4, IL-5, and IL-13) in the lung tissues. Histological studies revealed that 4-CMTB suppressed mucin production and inflammation in the lungs. Thus, results proved that FFA2 functions to suppress allergic asthma, suggesting 4-CMTB activation of FFA2 as a therapeutic tool for allergic asthma.

Keywords

Acknowledgement

This work was supported by a grant from Kyung Hee University in 2020 (KHU-20201230).

References

  1. Aoki, H., Hisada, T., Ishizuka, T., Utsugi, M., Ono, A., Koga, Y., Sunaga, N., Nakakura, T., Okajima, F., Dobashi, K. and Mori, M. (2010) Protective effect of resolvin E1 on the development of asthmatic airway inflammation. Biochem. Biophys. Res. Commun. 400, 128-133. https://doi.org/10.1016/j.bbrc.2010.08.025
  2. Barnes, P. J. (2013) Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease. J. Allergy Clin. Immunol. 131, 636-645. https://doi.org/10.1016/j.jaci.2012.12.1564
  3. Boucherat, O., Boczkowski, J., Jeannotte, L. and Delacourt, C. (2013) Cellular and molecular mechanisms of goblet cell metaplasia in the respiratory airways. Exp. Lung Res. 39, 207-216. https://doi.org/10.3109/01902148.2013.791733
  4. Brown, A. J., Goldsworthy, S. M., Barnes, A. A., Eilert, M. M., Tcheang, L., Daniels, D., Muir, A. I., Wigglesworth, M. J., Kinghorn, I., Fraser, N. J., Pike, N. B., Strum, J. C., Steplewski, K. M., Murdock, P. R., Holder, J. C., Marshall, F. H., Szekeres, P. G., Wilson, S., Ignar, D. M., Foord, S. M., Wise, A. and Dowell, S. J. (2003) The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312-11319. https://doi.org/10.1074/jbc.M211609200
  5. Colucci, R., Fornai, M., Tuccori, M., Antonioli, L., Pasqualetti, G., Blandizzi, C. and Tacca, M. D. (2007) Tolerability profiles of leukotriene receptor antagonists and long-acting β2-adrenoceptor agonists in combination with inhaled corticosteroids for treatment of asthma: a review. J. Asthma 44, 411-422. https://doi.org/10.1080/02770900701247178
  6. He, Y., Wen, Q., Yao, F., Xu, D., Huang, Y. and Wang, J. (2017) Gutlung axis: the microbial contributions and clinical implications. Crit. Rev. Microbiol. 43, 81-95. https://doi.org/10.1080/1040841X.2016.1176988
  7. Heo, J. Y. and Im, D. S. (2019) Anti-allergic effects of salvianolic acid A and tanshinone IIA from Salvia miltiorrhiza determined using in vivo and in vitro experiments. Int. Immunopharmacol. 67, 69-77. https://doi.org/10.1016/j.intimp.2018.12.010
  8. Hirasawa, A., Tsumaya, K., Awaji, T., Katsuma, S., Adachi, T., Yamada, M., Sugimoto, Y., Miyazaki, S. and Tsujimoto, G. (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med. 11, 90-94. https://doi.org/10.1038/nm1168
  9. Huang, J., Su, M., Lee, B., Kim, M., Jung, J. H. and Im, D. (2018) Suppressive effect of 4-hydroxy-2-(4-hydroxyphenethyl) isoindoline-1,3-dione on ovalbumin-induced allergic asthma. Biomol. Ther. (Seoul) 26, 539-545. https://doi.org/10.4062/biomolther.2018.006
  10. Im, D. S. (2013) Intercellular lipid mediators and GPCR drug discovery. Biomol. Ther. (Seoul) 21, 411-422. https://doi.org/10.4062/biomolther.2013.080
  11. Im, D. S. (2004) Discovery of new G protein-coupled receptors for lipid mediators. J. Lipid Res. 45, 410-418. https://doi.org/10.1194/jlr.R300006-JLR200
  12. Itoh, Y., Kawamata, Y., Harada, M., Kobayashi, M., Fujii, R., Fukusumi, S., Ogi, K., Hosoya, M., Tanaka, Y., Uejima, H., Tanaka, H., Maruyama, M., Satoh, R., Okubo, S., Kizawa, H., Komatsu, H., Matsumura, F., Noguchi, Y., Shinohara, T., Hinuma, S., Fujisawa, Y. and Fujino, M. (2003) Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 422, 173-176. https://doi.org/10.1038/nature01478
  13. Jin, Y. Y., Shi, Z. Q., Chang, W. Q., Guo, L. X., Zhou, J. L., Liu, J. Q., Liu, L. F. and Xin, G. Z. (2018) A chemical derivatization based UHPLC-LTQ-Orbitrap mass spectrometry method for accurate quantification of short-chain fatty acids in bronchoalveolar lavage fluid of asthma mice. J. Pharm. Biomed. Anal. 161, 336-343. https://doi.org/10.1016/j.jpba.2018.08.057
  14. Kim, M. J. and Im, D. S. (2019) Suppressive effects of type I angiotensin receptor antagonists, candesartan and irbesartan on allergic asthma. Eur. J. Pharmacol. 852, 25-33. https://doi.org/10.1016/j.ejphar.2019.02.035
  15. Le Poul, E., Loison, C., Struyf, S., Springael, J., Lannoy, V., Decobecq, M., Brezillon, S., Dupriez, V., Vassart, G., Van Damme, J., Parmentier, M. and Detheux, M. (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481-25489. https://doi.org/10.1074/jbc.M301403200
  16. Lee, T., Schwandner, R., Swaminath, G., Weiszmann, J., Cardozo, M., Greenberg, J., Jaeckel, P., Ge, H., Wang, Y., Jiao, X., Liu, J., Kayser, F., Tian, H. and Li, Y. (2008) Identification and functional characterization of allosteric agonists for the G protein-coupled receptor FFA2. Mol. Pharmacol. 74, 1599-1609. https://doi.org/10.1124/mol.108.049536
  17. Lee-Sarwar, K. A., Kelly, R. S., Lasky-Su, J., Zeiger, R. S., O'Connor, G. T., Sandel, M. T., Bacharier, L. B., Beigelman, A., Rifas-Shiman, S. L., Carey, V. J., Harshfield, B. J., Laranjo, N., Gold, D. R., Weiss, S. T. and Litonjua, A. A. (2020) Fecal short-chain fatty acids in pregnancy and offspring asthma and allergic outcomes. J. Allergy Clin. Immunol. Pract. 8, 1100-1102.e13. https://doi.org/10.1016/j.jaip.2019.08.036
  18. Macia, L., Tan, J., Vieira, A. T., Leach, K., Stanley, D., Luong, S., Maruya, M., McKenzie, C. I., Hijikata, A., Wong, C., Binge, L., Thorburn, A. N., Chevalier, N., Ang, C., Marino, E., Robert, R., Offermanns, S., Teixeira, M. M., Moore, R. J., Flavell, R. A., Fagarasan, S. and Mackay, C. R. (2015) Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6, 6734. https://doi.org/10.1038/ncomms7734
  19. Maslowski, K. M., Vieira, A. T., Ng, A., Kranich, J., Sierro, F., Yu, D., Schilter, H. C., Rolph, M. S., Mackay, F., Artis, D., Xavier, R. J., Teixeira, M. M. and Mackay, C. R. (2009) Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282-1286. https://doi.org/10.1038/nature08530
  20. Melhem, H., Kaya, B., Ayata, C. K., Hruz, P. and Niess, J. H. (2019) Metabolite-sensing G protein-coupled receptors connect the dietmicrobiota-metabolites axis to inflammatory bowel disease. Cells 8, 450. https://doi.org/10.3390/cells8050450
  21. Miyamoto, J., Kasubuchi, M., Nakajima, A. and Kimura, I. (2016) Anti-inflammatory and insulin-sensitizing effects of free fatty acid receptors. In Free Fatty Acid Receptors, pp. 221-231. Springer.
  22. Naclerio, R. (1999) Clinical manifestations of the release of histamine and other inflammatory mediators. J. Allergy Clin. Immunol. 103, S382-S385. https://doi.org/10.1016/S0091-6749(99)70216-2
  23. Park, S. J. and Im, D. S. (2019) Deficiency of sphingosine-1-phosphate receptor 2 (S1P2) attenuates bleomycin-induced pulmonary fibrosis. Biomol. Ther. (Seoul) 27, 318-326. https://doi.org/10.4062/biomolther.2018.131
  24. Pascual, R. M. and Peters, S. P. (2005) Airway remodeling contributes to the progressive loss of lung function in asthma: an overview. J. Allergy Clin. Immunol. 116, 477-486. https://doi.org/10.1016/j.jaci.2005.07.011
  25. Qian, L., Lu, L., Huang, L., Wen, Q., Xie, J., Jin, W., Li, H. and Jiang, L. (2019) The effect of neonatal maternal separation on short-chain fatty acids and airway inflammation in adult asthma mice. Allergol. Immunopathol. 47, 2-11. https://doi.org/10.1016/j.aller.2018.05.004
  26. Romagnani, S. (2002) Cytokines and chemoattractants in allergic inflammation. Mol. Immunol. 38, 881-885. https://doi.org/10.1016/S0161-5890(02)00013-5
  27. Smith, N. J., Ward, R. J., Stoddart, L. A., Hudson, B. D., Kostenis, E., Ulven, T., Morris, J. C., Trankle, C., Tikhonova, I. G., Adams, D. R. and Milligan, G. (2011) Extracellular loop 2 of the free fatty acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator. Mol. Pharmacol. 80, 163-173. https://doi.org/10.1124/mol.110.070789
  28. Sun, M., Wu, W., Liu, Z. and Cong, Y. (2017) Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. J. Gastroenterol. 52, 1-8. https://doi.org/10.1007/s00535-016-1242-9
  29. Talukdar, S., Bae, E. J., Imamura, T., Morinaga, H., Fan, W., Li, P., Lu, W. J., Watkins, S. M. and Olefsky, J. M. (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687-698. https://doi.org/10.1016/j.cell.2010.07.041
  30. Tan, J. K., McKenzie, C., Marino, E., Macia, L. and Mackay, C. R. (2017) Metabolite-sensing G protein-coupled receptors-facilitators of diet-related immune regulation. Annu. Rev. Immunol. 35, 371-402. https://doi.org/10.1146/annurev-immunol-051116-052235
  31. Theiler, A., Barnthaler, T., Platzer, W., Richtig, G., Peinhaupt, M., Rittchen, S., Kargl, J., Ulven, T., Marsh, L. M., Marsche, G., Schuligoi, R., Sturm, E. M. and Heinemann, A. (2019) Butyrate ameliorates allergic airway inflammation by limiting eosinophil trafficking and survival. J. Allergy Clin. Immunol. 144, 764-776. https://doi.org/10.1016/j.jaci.2019.05.002
  32. Theoharides, T. C. and Kalogeromitros, D. (2006) The critical role of mast cells in allergy and inflammation. Ann. N. Y. Acad. Sci. 1088, 78-99. https://doi.org/10.1196/annals.1366.025
  33. Thio, C. L., Chi, P., Lai, A. C. and Chang, Y. (2018) Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate. J. Allergy Clin. Immunol. 142, 1867-1883.e12. https://doi.org/10.1016/j.jaci.2018.02.032
  34. Tiwari, A. (2010) GPR43: an emerging target for the potential treatment of type 2 diabetes, obesity and insulin resistance. Curr. Opin. Investig. Drugs 11, 385-393.
  35. Trompette, A., Gollwitzer, E. S., Yadava, K., Sichelstiel, A. K., Sprenger, N., Ngom-Bru, C., Blanchard, C., Junt, T., Nicod, L. P., Harris, N. L. and Marsland, B. J. (2014) Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20, 159-166. https://doi.org/10.1038/nm.3444
  36. Ulven, T. (2012) Short-chain free fatty acid receptors FFA2/GPR43 and FFA3/GPR41 as new potential therapeutic targets. Front. Endocrinol. 3, 111. https://doi.org/10.3389/fendo.2012.00111
  37. Wardlaw, A., Brightling, C., Green, R., Woltmann, G., Bradding, P. and Pavord, I. (2002) New insights into the relationship between airway inflammation and asthma. Clin. Sci. 103, 201-211. https://doi.org/10.1042/CS20020105
  38. Young, R. P., Hopkins, R. J. and Marsland, B. (2016) The gut-liver-lung axis. Modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 54, 161-169. https://doi.org/10.1165/rcmb.2015-0250PS

Cited by

  1. Structure‐Activity Relationship Explorations and Discovery of a Potent Antagonist for the Free Fatty Acid Receptor 2 vol.16, pp.21, 2021, https://doi.org/10.1002/cmdc.202100356