DOI QR코드

DOI QR Code

Anodically prepared TiO2 Micro and Nanostructures as Anode Materials for Lithium-ion Batteries

양극산화를 사용한 TiO2 마이크로/나노 구조체 제조 및 리튬 이온 전지 음극재로의 응용 연구

  • Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • 김용태 (인하대학교 화학공학과) ;
  • 최진섭 (인하대학교 화학공학과)
  • Received : 2021.03.12
  • Accepted : 2021.04.06
  • Published : 2021.06.10

Abstract

With increasingly strict requirements for advanced energy storage devices in electric vehicles (EVs) and stationary energy storage systems (EES), the development of lithium-ion batteries (LIBs) with high power density and safety has become an urgent task. Because the performance of LIBs is determined primarily by the physicochemical characteristics of its electrode material, TiO2, owing to its excellent stability, high safety levels, and environmentally friendly properties, has received significant attention as an alternative material for the replacement of commercial carbon-based anode materials. In particular, self-organized TiO2 micro and nanostructures prepared by anodization have been intensively investigated as promising anode materials. In this review, the mechanism for the formation of anodic TiO2 nanotubes and microcones and the parameters that influence their morphology are described. Furthermore, recent developments in anodic TiO2-based composites as anode electrodes for LIBs to overcome the limitations of low conductivity and specific capacity are summarized.

전기자동차(EV) 및 중대형 에너지 저장 장치(ESS)의 활용을 위한 차세대 에너지 저장 장치에 대한 요구가 증가함에 따라, 높은 출력 및 안정성 등의 특성을 갖는 리튬 이온 전지 개발이 시급한 과제로 떠오르고 있다. 리튬 이온 이차 전지의 성능은 주로 전극 재료의 물리/화학적 특성에 의해 결정되는데, TiO2는 우수한 안정성 및 높은 안정성, 친환경적 특성으로 인해 현재 상용화된 탄소계 음극재를 대체할 수 있는 물질로 높은 관심을 받고 있다. 특히, 양극산화를 통해 제조된 자기 정렬된 TiO2 마이크로 및 나노 구조는 차세대 리튬 이온 이차 전지의 유망한 음극 소재 물질로 많은 연구가 이루어지고 있다. 본 총설 논문에서는 양극산화를 통한 TiO2 나노 튜브 및 마이크로콘 구조 메커니즘 및 구조 발달에 영향을 미치는 인자에 대한 설명을 다루었다. 또한, TiO2의 낮은 전기전도도 및 용량 한계를 극복하기 위한 TiO2 기반 복합체를 리튬 이온 이차 전지의 음극재로 활용한 연구를 소개하였다.

Keywords

Acknowledgement

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1I1A1A01064020).

References

  1. M. Madian, A. Eychmuller, and L. Giebeler, Current advances in TiO2-based nanostructure electrodes for high performance lithium ion batteries, Batteries, 4, 7 (2018). https://doi.org/10.3390/batteries4010007
  2. B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, 195, 2419-2430 (2010). https://doi.org/10.1016/j.jpowsour.2009.11.048
  3. X. Zuo, J. Zhu, P. Muller-Buschbaum and Y.-J. Cheng, Silicon based lithium-ion battery anodes: A chronicle perspective review, Nano Energy, 31, 113-143 (2017). https://doi.org/10.1016/j.nanoen.2016.11.013
  4. M. S. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 104, 4271-4302 (2004). https://doi.org/10.1021/cr020731c
  5. J. W. Fergus, Recent developments in cathode materials for lithium ion batteries, J. Power Sources, 195, 939-954 (2010). https://doi.org/10.1016/j.jpowsour.2009.08.089
  6. J. Islam, F. I. Chowdhury, J. Uddin, R. Amin, and J. Uddin, Review on carbonaceous materials and metal composites in deformable electrodes for flexible lithium-ion batteries, RSC Adv., 11, 5958-5992 (2021). https://doi.org/10.1039/D0RA10229F
  7. C. Wang, A. J. Appleby, and F. E. Little, Charge-discharge stability of graphite anodes for lithium-ion batteries, J. Electroanal. Chem., 497, 33-46 (2001). https://doi.org/10.1016/S0022-0728(00)00447-2
  8. Y. Wu, C. Jiang, C. Wan, and E. Tsuchida, Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries, Electrochem. Commun., 2, 272-275 (2000). https://doi.org/10.1016/S1388-2481(00)00022-9
  9. C. Uhlmann, J. Illig, M. Ender, R. Schuster, and E. Ivers-Tiffee, In situ detection of lithium metal plating on graphite in experimental cells, J. Power Sources, 279, 428-438 (2015). https://doi.org/10.1016/j.jpowsour.2015.01.046
  10. C. Zhang, S. Liu, Y. Qi, F. Cui, and X. Yang, Conformal carbon coated TiO2 aerogel as superior anode for lithium-ion batteries, Chem. Eng. J., 351, 825-831 (2018). https://doi.org/10.1016/j.cej.2018.06.125
  11. D. P. Opra, S. V. Gnedenkov, and S. L. Sinebryukhov, Recent efforts in design of TiO2 (B) anodes for high-rate lithium-ion batteries: A review, J. Power Sources, 442, 227225 (2019). https://doi.org/10.1016/j.jpowsour.2019.227225
  12. Z. Weng, H. Guo, X. Liu, S. Wu, K. Yeung, and P.K. Chu, Nanostructured TiO2 for energy conversion and storage, RSC Adv., 3, 24758-24775 (2013). https://doi.org/10.1039/c3ra44031a
  13. C. Huang, S.-X. Zhao, H. Peng, Y.-H. Lin, C.-W. Nan, and G.-Z. Cao, Hierarchical porous Li4Ti5O12-TiO2 composite anode materials with pseudocapacitive effect for high-rate and low-temperature applications, J. Mater. Chem. A, 6, 14339-14351 (2018). https://doi.org/10.1039/C8TA03172J
  14. Y. Wang, Y.-x. Zhang, W.-J. Yang, S. Jiang, X.-w. Hou, R. Guo, W. Liu, P. Huang, J. Lu, and H.-t. Gu, Enhanced rate performance of Li4Ti4O12 anode for advanced lithium batteries, J. Electrochem. Soc., 166, A5014 (2018). https://doi.org/10.1149/2.0041903jes
  15. S. Wang, P.-K. Lee, X. Yang, A. L. Rogach, A. R. Armstrong, and Y. Denis, Polyimide-cellulose interaction in Sb anode enables fast charging lithium-ion battery application, Mater. Today Energy, 9, 295-302 (2018). https://doi.org/10.1016/j.mtener.2018.06.007
  16. Z. F. Yin, L. Wu, H. G. Yang, and Y. H. Su, Recent progress in biomedical applications of titanium dioxide, PCCP, 15, 4844-4858 (2013). https://doi.org/10.1039/c3cp43938k
  17. F. Dachille, P. Simons, and R. Roy, Pressure-temperature studies of anatase, brookite, rutile and TiO2-II, Am. Min., 53, 1929-1939 (1968).
  18. R. van de Krol, A. Goossens, and J. Schoonman, Spatial extent of lithium intercalation in anatase TiO2, J. Phys. Chem. B, 103, 7151-7159 (1999). https://doi.org/10.1021/jp9909964
  19. H. Zhang and J. F. Banfield, Structural characteristics and mechanical and thermodynamic properties of nanocrystalline TiO2, Chem. Rev., 114, 9613-9644 (2014). https://doi.org/10.1021/cr500072j
  20. J. Macak, F. Schmidt-Stein, and P. Schmuki, Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles, Electrochem. Commun., 9, 1783-1787 (2007). https://doi.org/10.1016/j.elecom.2007.04.002
  21. C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. M. Sung and H. Shin, Template-directed synthesis of oxide nanotubes: Fabrication, characterization, and applications, Chem. Mater., 20, 756-767 (2008). https://doi.org/10.1021/cm702138c
  22. M. G. Choi, Y.-G. Lee, S.-W. Song, and K. M. Kim, Lithium-ion battery anode properties of TiO2 nanotubes prepared by the hydrothermal synthesis of mixed (anatase and rutile) particles, Electrochim. Acta, 55, 5975-5983 (2010). https://doi.org/10.1016/j.electacta.2010.05.052
  23. S. Ribbens, V. Meynen, G. Van Tendeloo, X. Ke, M. Mertens, B. Maes, P. Cool, and E. Vansant, Development of photocatalytic efficient Ti-based nanotubes and nanoribbons by conventional and microwave assisted synthesis strategies, Microporous Mesoporous Mater., 114, 401-409 (2008). https://doi.org/10.1016/j.micromeso.2008.01.028
  24. L. B. Arruda, C. M. Santos, M. O. Orlandi, W. H. Schreiner, and P. N. Lisboa-Filho, Formation and evolution of TiO2 nanotubes in alkaline synthesis, Ceram. Int., 41, 2884-2891 (2015). https://doi.org/10.1016/j.ceramint.2014.10.113
  25. H. Tsuchiya, J. M. Macak, I. Sieber, and P. Schmuki, Self-organized high-aspect-ratio nanoporous zirconium oxides prepared by electrochemical anodization, Small, 1, 722-725 (2005). https://doi.org/10.1002/smll.200400163
  26. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M.-Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal., 27, 629-637 (1999). https://doi.org/10.1002/(SICI)1096-9918(199907)27:7<629::AID-SIA551>3.0.CO;2-0
  27. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. Singh, Z. Chen, and E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res., 16, 3331-3334 (2001). https://doi.org/10.1557/JMR.2001.0457
  28. D.-J. Yang, H.-G. Kim, S.-J. Cho, and W.-Y. Choi, Thickness-conversion ratio from titanium to TiO2 nanotube fabricated by anodization method, Mater. Lett., 62, 775-779 (2008). https://doi.org/10.1016/j.matlet.2007.06.058
  29. H. Tsuchiya, J. M. Macak, L. Taveira, E. Balaur, A. Ghicov, K. Sirotna, and P. Schmuki, Self-organized TiO2 nanotubes prepared in ammonium fluoride containing acetic acid electrolytes, Electrochem. Commun., 7, 576-580 (2005). https://doi.org/10.1016/j.elecom.2005.04.008
  30. H. Tsuchiya, J. M. Macak, A. Ghicov, L. Taveira, and P. Schmuki, Self-organized porous TiO2 and ZrO2 produced by anodization, Corros. Sci., 47, 3324-3335 (2005). https://doi.org/10.1016/j.corsci.2005.05.041
  31. Y. Li, Q. Ma, J. Han, L. Ji, J. Wang, J. Chen, and Y. Wang, Controllable preparation, growth mechanism and the properties research of TiO2 nanotube arrays, Appl. Surf. Sci., 297, 103-108 (2014). https://doi.org/10.1016/j.apsusc.2014.01.086
  32. S. Sreekantan, K. A. Saharudin, and L. C. Wei, Formation of TiO2 nanotubes via anodization and potential applications for photo-catalysts, biomedical materials, and photoelectrochemical cell, IOP Conf. Ser. Mater. Sci. Eng., IOP Publishing, pp. 012002 (2011).
  33. D. Regonini, C. R. Bowen, A. Jaroenworaluck, and R. Stevens, A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes, Mater. Sci. Eng. R Rep., 74, 377-406 (2013). https://doi.org/10.1016/j.mser.2013.10.001
  34. M. Lohrengel, Thin anodic oxide layers on aluminium and other valve metals: High field regime, Mater. Sci. Eng. R Rep., 11, 243-294 (1993). https://doi.org/10.1016/0927-796X(93)90005-N
  35. A. Jaroenworaluck, D. Regonini, C. R. Bowen, R. Stevens, and D. Allsopp, Macro, micro and nanostructure of TiO2 anodised films prepared in a fluorine-containing electrolyte, J. Mater. Sci., 42, 6729-6734 (2007). https://doi.org/10.1007/s10853-006-1474-9
  36. H. Yoo, M. Kim, Y.-T. Kim, K. Lee, and J. Choi, Catalyst-doped anodic TiO2 nanotubes: Binder-free electrodes for (photo) electrochemical reactions, Catalysts, 8, 555 (2018). https://doi.org/10.3390/catal8110555
  37. G. Thompson, Porous anodic alumina: Fabrication, characterization and applications, Thin Solid Films, 297, 192-201 (1997). https://doi.org/10.1016/S0040-6090(96)09440-0
  38. S. Berger, S. P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J. S. Hammond, D. F. Paul, and S. Reichlmaier, The origin for tubular growth of TiO2 nanotubes: A fluoride rich layer between tube-walls, Surf. Sci., 605, L57-L60 (2011). https://doi.org/10.1016/j.susc.2011.06.019
  39. S. Garcia-Vergara, P. Skeldon, G. Thompson, and H. Habazaki, A flow model of porous anodic film growth on aluminium, Electrochim. Acta, 52, 681-687 (2006). https://doi.org/10.1016/j.electacta.2006.05.054
  40. J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, Smooth anodic TiO2 nanotubes, Angew. Chem. Int. Ed., 44, 7463-7465 (2005). https://doi.org/10.1002/anie.200502781
  41. H. Tsuchiya, J. M. Macak, A. Ghicov, A. S. Rader, L. Taveira, and P. Schmuki, Characterization of electronic properties of TiO2 nanotube films, Corros. Sci., 49, 203-210 (2007). https://doi.org/10.1016/j.corsci.2006.05.009
  42. T. Froschl, U. Hormann, P. Kubiak, G. Kucerova, M. Pfanzelt, C. K. Weiss, R. Behm, N. Husing, U. Kaiser, and K. Landfester, High surface area crystalline titanium dioxide: Potential and limits in electrochemical energy storage and catalysis, Chem. Soc. Rev., 41, 5313-5360 (2012). https://doi.org/10.1039/c2cs35013k
  43. R. Kirchgeorg, M. Kallert, N. Liu, R. Hahn, M. S. Killian, and P. Schmuki, Key factors for an improved lithium ion storage capacity of anodic TiO2 nanotubes, Electrochim. Acta, 198, 56-65 (2016). https://doi.org/10.1016/j.electacta.2016.03.009
  44. H. Han, T. Song, E.-K. Lee, A. Devadoss, Y. Jeon, J. Ha, Y.-C. Chung, Y.-M. Choi, Y.-G. Jung, and U. Paik, Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries, ACS Nano, 6, 8308-8315 (2012). https://doi.org/10.1021/nn303002u
  45. M. Wagemaker, W. J. Borghols, and F. M. Mulder, Large impact of particle size on insertion reactions. A case for anatase LixTiO2, J. Am. Chem. Soc., 129, 4323-4327 (2007). https://doi.org/10.1021/ja067733p
  46. S. Ivanov, L. Cheng, H. Wulfmeier, D. Albrecht, H. Fritze, and A. Bund, Electrochemical behavior of anodically obtained titania nanotubes in organic carbonate and ionic liquid based Li ion containing electrolytes, Electrochim. Acta, 104, 228-235 (2013). https://doi.org/10.1016/j.electacta.2013.04.115
  47. W.-H. Ryu, D.-H. Nam, Y.-S. Ko, R.-H. Kim, and H.-S. Kwon, Electrochemical performance of a smooth and highly ordered TiO2 nanotube electrode for Li-ion batteries, Electrochim. Acta, 61, 19-24 (2012). https://doi.org/10.1016/j.electacta.2011.11.042
  48. H.-T. Fang, M. Liu, D.-W. Wang, T. Sun, D.-S. Guan, F. Li, J. Zhou, T.-K. Sham, and H.-M. Cheng, Comparison of the rate capability of nanostructured amorphous and anatase TiO2 for lithium insertion using anodic TiO2 nanotube arrays, Nanotechnology, 20, 225701 (2009). https://doi.org/10.1088/0957-4484/20/22/225701
  49. J. Gao, G. Qiu, H. Li, M. Li, C. Li, L. Qian, and B. Yang, Boron-doped graphene/TiO2 nanotube-based aqueous lithium ion capacitors with high energy density, Electrochim. Acta, 329, 135175 (2020). https://doi.org/10.1016/j.electacta.2019.135175
  50. R. Menendez, P. Alvarez, C. Botas, F. Nacimiento, R. Alcantara, J. L. Tirado, and G. F. Ortiz, Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries, J. Power Sources, 248, 886-893 (2014). https://doi.org/10.1016/j.jpowsour.2013.10.019
  51. N. y. Kim, G. Lee, and J. Choi, Fast-charging and high volumetric capacity anode based on Co3O4/CuO@ TiO2 composites for lithium-ion batteries, Chem. Eur. J., 24, 19045-19052 (2018). https://doi.org/10.1002/chem.201804313
  52. B. Heo, J. Ha, Y.-T. Kim, and J. Choi, 10 ㎛-thick MoO3-coated TiO2 nanotubes as a volume expansion regulated binder-free anode for lithium ion batteries, J. Ind. Eng. Chem., 96, 364-370 (2021). https://doi.org/10.1016/j.jiec.2021.05.003
  53. D. Kim, K. Lee, P. Roy, B. I. Birajdar, E. Spiecker, and P. Schmuki, Formation of a non-thickness-limited titanium dioxide mesosponge and its use in dye-sensitized solar cells, Angew. Chem., 121, 9490-9493 (2009). https://doi.org/10.1002/ange.200904455
  54. D. Kowalski, D. Kim, and P. Schmuki, TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications, Nano Today, 8, 235-264 (2013). https://doi.org/10.1016/j.nantod.2013.04.010
  55. O. Rhee, G. Lee, and J. Choi, Highly ordered TiO2 microcones with high rate performance for enhanced lithium-ion storage, ACS Appl. Mater. Interfaces, 8, 14558-14563 (2016). https://doi.org/10.1021/acsami.6b03099
  56. J. Park, G. Lee, and J. Choi, Key anodization factors for determining the formation of TiO2 microcones vs nanotubes, J. Electrochem. Soc., 164, D640 (2017). https://doi.org/10.1149/2.1601709jes
  57. D. Li, D. Chen, J. Wang, and P. Liang, Effect of acid solution, fluoride ions, anodic potential and time on the microstructure and electronic properties of self-ordered TiO2 nanotube arrays, Electrochim. Acta, 207, 152-163 (2016). https://doi.org/10.1016/j.electacta.2016.04.002
  58. J. M. Macak, H. Tsuchiya, and P. Schmuki, High-aspect-ratio TiO2 nanotubes by anodization of titanium, Angew. Chem. Int. Ed., 44, 2100-2102 (2005). https://doi.org/10.1002/anie.200462459
  59. J. Park and J. Choi, Formation of well dispersed TiO2 microcones; the 20% surface occupation, Appl. Surf. Sci., 448, 212-218 (2018). https://doi.org/10.1016/j.apsusc.2018.04.033
  60. K. Lee, A. Mazare, and P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes, Chem. Rev., 114, 9385-9454 (2014). https://doi.org/10.1021/cr500061m
  61. K. Indira, U.K. Mudali, T. Nishimura, and N. Rajendran, A review on TiO2 nanotubes: Influence of anodization parameters, formation mechanism, properties, corrosion behavior, and biomedical applications, J. Bio. Tribocorros., 1, 1-22 (2015).
  62. Y. T. Kim, J. H. Youk, and J. Choi, Inverse-direction growth of TiO2 microcones by subsequent anodization in HClO4 for increased performance of lithium-ion batteries, ChemElectroChem, 7, 1248-1255 (2020). https://doi.org/10.1002/celc.202000114
  63. J. Park, S. Kim, G. Lee, and J. Choi, RGO-coated TiO2 microcones for high-rate lithium-ion batteries, ACS Omega, 3, 10205-10210 (2018). https://doi.org/10.1021/acsomega.8b00926
  64. H. Yoo, G. Lee, and J. Choi, Binder-free SnO2-TiO2 composite anode with high durability for lithium-ion batteries, RSC Adv., 9, 6589-6595 (2019). https://doi.org/10.1039/C8RA10358E
  65. A. Yerokhin, L. Snizhko, N. Gurevina, A. Leyland, A. Pilkington, and A. Matthews, Discharge characterization in plasma electrolytic oxidation of aluminium, J. Phys. D: Appl. Phys., 36, 2110-2120 (2003). https://doi.org/10.1088/0022-3727/36/17/314
  66. L. Snizhko, A. Yerokhin, A. Pilkington, N. Gurevina, D. Misnyankin, A. Leyland, and A. Matthews, Anodic processes in plasma electrolytic oxidation of aluminium in alkaline solutions, Electrochim. Acta, 49, 2085-2095 (2004). https://doi.org/10.1016/j.electacta.2003.11.027
  67. G. Lee, S. Kim, S. Kim, and J. Choi, SiO2/TiO2 composite film for high capacity and excellent cycling stability in lithium-ion battery anodes, Adv. Funct. Mater., 27, 1703538 (2017). https://doi.org/10.1002/adfm.201703538
  68. J. Wu, X. He, G. Li, J. Deng, L. Chen, W. Xue, and D. Li, Rapid construction of TiO2/SiO2 composite film on Ti foil as lithium-ion battery anode by plasma discharge in solution, Appl. Phys. Lett., 114, 043903 (2019). https://doi.org/10.1063/1.5083686