DOI QR코드

DOI QR Code

Recent Research Trend of Biosensors for Colorectal Cancer Specific Protein Biomarkers

대장암 진단용 단백질 바이오마커 측정을 위한 바이오센서 개발의 최신 연구 동향

  • Li, Jingjing (Department of Chemistry, Kyungpook National University) ;
  • Si, Yunpei (Department of Chemistry, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry, Kyungpook National University)
  • 리징징 (경북대학교 자연과학대학 화학과) ;
  • 스윈페이 (경북대학교 자연과학대학 화학과) ;
  • 이혜진 (경북대학교 자연과학대학 화학과)
  • Received : 2021.04.30
  • Accepted : 2021.05.20
  • Published : 2021.06.10

Abstract

Colorectal cancer (CRC) is one of the most prevalent diseases in modern society, constituting a serious threat to global health. Currently, routine clinical screening and early removal of precancerous polyps are the most successful methods for reducing CRC incidence and mortality. However, the high cost and invasive detection of sigmoidoscopy and colonoscopy limited the CRC-screening participation and prevention. The emergence of biosensors provides an inexpensive, sensitive, less invasive tool for detecting CRC disease biomarkers. This review highlights some of recent efforts made on developing biosensors with electrochemical and optical techniques targeting CRC specific protein biomarkers for early diagnosis and prognosis, potential applications, and future perspectives.

Keywords

Acknowledgement

This research was supported by Kyungpook National University Development Project Research Fund, 2018.

References

  1. A. J. M. Watson and P. D. Collins, Colon cancer: A civilization disorder, Dig. Dis., 29, 222-228 (2011). https://doi.org/10.1159/000323926
  2. Cancer, https://www.who.int/health-topics/cancer#tab=tab_1 (Access on April 23, 2021).
  3. E. Ferlizza, R. Solmi, M. Sgarzi, L. Ricciardiello, and M. Lauriola, The roadmap of colorectal cancer screening, Cancers, 13, 1101 (2021). https://doi.org/10.3390/cancers13051101
  4. J. Quinchia, D. Echeverri, A. F. Cruz-Pacheco, M. E. Maldonado, and J. Orozco, Electrochemical biosensors for determination of colorectal tumor biomarkers, Micromachines, 11, 411 (2020). https://doi.org/10.3390/mi11040411
  5. W. Fei, L. Chen, J. Chen, Q. Shi, L. Zhang, S. Liu, L. Li, L. Zheng, and X. Hu, RBP4 and THBS2 are serum biomarkers for diagnosis of colorectal cancer, Oncotarget, 8, 92254-92264 (2017). https://doi.org/10.18632/oncotarget.21173
  6. S. H. Lee, Y. E. Park, J. E. Lee, and H. J. Lee, A surface plasmon resonance biosensor in conjunction with a DNA aptamer-antibody bioreceptor pair for heterogeneous nuclear ribonucleoprotein A1 concentrations in colorectal cancer plasma solutions, Biosens. Bio-electron., 154, 112065 (2020). https://doi.org/10.1016/j.bios.2020.112065
  7. U. Ladabaum, J. A. Dominitz, C. Kahi, and R. E. Schoen, Strategies for colorectal cancer screening, Gastroenterology, 158, 418-432 (2020). https://doi.org/10.1053/j.gastro.2019.06.043
  8. M. F. Kaminski, D. J. Robertson, C. Senore, and D. K. Rex, Optimizing the quality of colorectal cancer screening worldwide, Gastroenterology, 158, 404-417 (2020). https://doi.org/10.1053/j.gastro.2019.11.026
  9. P. Kuppusamy, N. Govindan, M. M. Yusoff, and S. J. A. Ichwan, Proteins are potent biomarkers to detect colon cancer progression, Saudi J. Biol. Sci., 24, 1212-1221 (2017). https://doi.org/10.1016/j.sjbs.2014.09.017
  10. M. Barani, M. Bilal, A. Rahdar, R. Arshad, A. Kumar, H. Hamishekar, and G. Z. Kyzas, Nanodiagnosis and nanotreatment of colorectal cancer: An overview, J. Nanopart. Res., 23, 18 (2021). https://doi.org/10.1007/s11051-020-05129-6
  11. P. Butmee, G. Tumcharern, G. Thouand, K. Kalcher, and A. Samphao, An ultrasensitive immunosensor based on manganese dioxide-graphene nanoplatelets and core shell Fe3O4@Au nanoparticles for label-free detection of carcinoembryonic antigen, Bioelectrochemistry, 132, 107452 (2020). https://doi.org/10.1016/j.bioelechem.2019.107452
  12. G. Paniagua, A. Villalonga, M. Eguilaz, B. Vegas, C. Parrado, G. Rivas, P. Diez, and R. Villalonga, Amperometric aptasensor for carcinoembryonic antigen based on the use of bifunctionalized Janus nanoparticles as biorecognition-signaling element, Anal. Chim. Acta, 1061, 84-91 (2019). https://doi.org/10.1016/j.aca.2019.02.015
  13. G. Ibanez-Redin, E. M. Materon, R. H. M. Furuta, D. Wilson, G. F. do Nascimento, M. E. Melendez, A. L. Carvalho, R. M. Reis, O. N. Oliveira, Jr., and D. Goncalves, Screen-printed electrodes modified with carbon black and polyelectrolyte films for determination of cancer marker carbohydrate antigen 19-9, Microchim. Acta, 187, 417 (2020). https://doi.org/10.1007/s00604-020-04404-6
  14. G. Ibanez-Redin, N. Joshi, G. F. do Nascimento, D. Wilson, M. E. Melendez, A. L. Carvalho, R. M. Reis, D. Goncalves, and O. N. Oliveira, Jr., Determination of p53 biomarker using an electrochemical immunoassay based on layer-by-layer films with NiFe2O4 nanoparticles, Microchim. Acta, 187, 619 (2020). https://doi.org/10.1007/s00604-020-04594-z
  15. R. Elshafey, P. Brisebois, H. Abdulkarim, R. Izquierdo, A. C. Tavares, and M. Siaj, Effect of graphene oxide sheet size on the response of a label-free voltammetric immunosensor for cancer marker VEGF, Electroanalysis, 32, 2205-2212 (2020). https://doi.org/10.1002/elan.202000065
  16. G. Ibanez-Redin, R. H. M. Furuta, D. Wilson, F. M. Shimizu, E. M. Materon, L. Arantes, M. E. Melendez, A. L. Carvalho, R. M. Reis, M. N. Chaur, D. Goncalves, and O. N. Oliveira, Jr., Screen-printed interdigitated electrodes modified with nanostructured carbon nano-onion films for detecting the cancer biomarker CA19-9, Mater. Sci. Eng. C, 99, 1502-1508 (2019). https://doi.org/10.1016/j.msec.2019.02.065
  17. A. Paul, C. M. S., E. Primiceri, D. N. Srivastava, and G. Maruccio, Picomolar detection of retinol binding protein 4 for early management of type II diabetes, Biosens. Bioelectron., 128, 122-128 (2019). https://doi.org/10.1016/j.bios.2018.12.032
  18. E. B. Aydin, Highly sensitive impedimetric immunosensor for determination of interleukin 6 as a cancer biomarker by using conjugated polymer containing epoxy side groups modified disposable ITO electrode, Talanta, 215, 120909 (2020). https://doi.org/10.1016/j.talanta.2020.120909
  19. E. B. Aydin, M. Aydin, and M. K. Sezginturk, A novel electrochemical immunosensor based on acetylene black/epoxy-substituted-polypyrrole polymer composite for the highly sensitive and selective detection of interleukin 6, Talanta, 222, 121596 (2021). https://doi.org/10.1016/j.talanta.2020.121596
  20. S. Verma, A. Singh, A. Shukla, J. Kaswan, K. Arora, J. Ramirez-Vick, P. Singh, and S. P. Singh, Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer, ACS Appl. Mater. Interfaces, 9, 27462-27474 (2017). https://doi.org/10.1021/acsami.7b06839
  21. N. Pachauri, G. Lakshmi, S. Sri, P. K. Gupta, and P. R. Solanki, Silver molybdate nanoparticles based immunosensor for the non-invasive detection of Interleukin-8 biomarker, Mater. Sci. Eng. C, 113, 110911 (2020). https://doi.org/10.1016/j.msec.2020.110911
  22. K. Zhang, S. Lv, Q. Zhou, and D. Tang, CoOOH nanosheets-coated g-C3N4/CuInS2 nanohybrids for photoelectrochemical biosensor of carcinoembryonic antigen coupling hybridization chain reaction with etching reaction, Sens. Actuators B Chem., 307, 127631 (2020). https://doi.org/10.1016/j.snb.2019.127631
  23. Y. Wang, S. Sun, J. Luo, Y. Xiong, T. Ming, J. Liu, Y. Ma, S. Yan, Y. Yang, Z. Yang, J. Reboud, H. Yin, J. M. Cooper, and X. Cai, Low sample volume origami-paper-based graphene-modified aptasensors for label-free electrochemical detection of cancer biomarker-EGFR, Microsyst. Nanoeng., 6, 1-9 (2020). https://doi.org/10.1038/s41378-019-0121-y
  24. S. Sun, Y. Wang, T. Ming, J. Luo, Y. Xing, J. Liu, Y. Xiong, Y. Ma, S. Yan, Y. Yang, and X. Cai, An origami paper-based nanoformulated immunosensor detects picograms of VEGF-C per milliliter of blood, Commun. Biol., 4, 121 (2021). https://doi.org/10.1038/s42003-020-01607-8
  25. J. Shu and D. Tang, Recent advances in photoelectrochemical sensing: From engineered photoactive materials to sensing devices and detection modes, Anal. Chem., 92, 363-377 (2020). https://doi.org/10.1021/acs.analchem.9b04199
  26. A. Devadoss, P. Sudhagar, C. Terashima, K. Nakata, and A. Fujishima, Photoelectrochemical biosensors: new insights into promising photoelectrodes and signal amplification strategies, J. Photochem. Photobiol. C, 24, 43-63 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.06.002
  27. S. Lee and H. J. Lee, Recent research trend in lateral flow immunoassay strip (LFIA) with colorimetric method for detection of cancer biomarkers, Appl. Chem. Eng., 31, 585-590 (2020). https://doi.org/10.14478/ACE.2020.1093
  28. L. Anfossi, F. Di Nardo, S. Cavalera, C. Giovannoli, and C. Baggiani, Multiplex lateral flow immunoassay: An overview of strategies towards high-throughput point-of-need testing, Biosensors, 9, 1-14 (2019). https://doi.org/10.3390/bios9010001
  29. M. Sajid, A.-N. Kawde, and M. Daud, Designs, formats and applications of lateral flow assay: A literature review, J. Saudi Chem. Soc., 19, 689-705 (2015). https://doi.org/10.1016/j.jscs.2014.09.001
  30. S. Kim, A. W. Wark, and H. J. Lee, Femtomolar detection of Tau proteins in undiluted plasma using surface plasmon resonance, Anal. Chem., 88, 7793-7799 (2016). https://doi.org/10.1021/acs.analchem.6b01825
  31. S. H. Baek, H. W. Song, S. Lee, J.-E. Kim, Y. H. Kim, J. S. Wi, J. G. Ok, J. S. Park, S. Hong, M. K. Kwak, H. J. Lee, and S.-W. Nam, Gold nanoparticle-enhanced and roll-to-roll nanoimprinted LSPR platform for detecting interleukin-10, Front. Chem., 8, 285 (2020). https://doi.org/10.3389/fchem.2020.00285
  32. B. Shao, and Z. Xiao, Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors - A review, Anal. Chim. Acta, 1114, 74-84 (2020). https://doi.org/10.1016/j.aca.2020.01.052
  33. K.-H. Chen, M.-J. Pan, Z. Jargalsaikhan, T.-O. Ishdorj, and F.-G. Tseng, Development of surface-enhanced raman scattering (SERS)-based surface-corrugated nanopillars for biomolecular detection of colorectal cancer, Biosensors, 10, 163 (2020). https://doi.org/10.3390/bios10110163
  34. V. Moisoiu, A. Stefancu, D. Gulei, R. Boitor, L. Magdo, L. Raduly, S. Pasca, P. Kubelac, N. Mehterov, V. Chis, M. Simon, M. Muresan, A. I. Irimie, M. Baciut, R. Stiufiuc, I. E. Pavel, P. Achimas-Cadariu, C. Ionescu, V. Lazar, V. Sarafian, I. Notingher, N. Leopold, and I. Berindan-Neagoe, SERS-based differential diagnosis between multiple solid malignancies: Breast, colorectal, lung, ovarian and oral cancer, Int. J. Nanomedicine, 14, 6165-6178 (2019). https://doi.org/10.2147/IJN.S198684
  35. T. Mahmoudi, B. Shirdel, B. Mansoori, and B. Baradaran, Dual sensitivity enhancement in gold nanoparticle-based lateral flow immunoassay for visual detection of carcinoembryonic antigen, Anal. Sci. Adv., 1, 161-172 (2020). https://doi.org/10.1002/ansa.202000023
  36. D. Huang, H. Ying, D. Jiang, F. Liu, Y. Tian, C. Du, L. Zhang, and X. Pu, Rapid and sensitive detection of interleukin-6 in serum via time-resolved lateral flow immunoassay, Anal. Biochem., 588, 113468 (2020). https://doi.org/10.1016/j.ab.2019.113468
  37. Y. Huang, Y. Wen, K. Baryeh, S. Takalkar, M. Lund, X. Zhang, and G. Liu, Lateral flow assay for carbohydrate antigen 19-9 in whole blood by using magnetized carbon nanotubes, Microchim. Acta, 184, 4287-4294 (2017). https://doi.org/10.1007/s00604-017-2464-0
  38. V. Ranganathan, S. Srinivasan, A. Singh, and M. C. DeRosa, An aptamer-based colorimetric lateral flow assay for the detection of human epidermal growth factor receptor 2 (HER2), Anal. Biochem., 588, 113471 (2020). https://doi.org/10.1016/j.ab.2019.113471
  39. M. L. Ermini, X. Chadtova Song, T. Springer, and J. Homola, Peptide functionalization of gold nanoparticles for the detection of carcinoembryonic antigen in blood plasma via SPR-based biosensor, Front. Chem., 7, 40 (2019). https://doi.org/10.3389/fchem.2019.00040
  40. H. Medetalibeyoglu, G. Kotan, N. Atar, and M. L. Yola, A novel sandwich-type SERS immunosensor for selective and sensitive carcinoembryonic antigen (CEA) detection, Anal. Chim. Acta, 1139, 100-110 (2020). https://doi.org/10.1016/j.aca.2020.09.034
  41. J. Tang, L. Wu, J. Lin, E. Zhang, and Y. Luo, Development of quantum dot-based fluorescence lateral flow immunoassay strip for rapid and quantitative detection of serum interleukin-6, J. Clin. Lab. Anal., 35, e23752 (2021).
  42. P. Li, F. Long, W. Chen, J. Chen, P. K. Chu, and H. Wang, Fundamentals and applications of surface-enhanced Raman spectroscopy-based biosensors, Curr. Opin. Biomed. Eng., 13, 51-59 (2020). https://doi.org/10.1016/j.cobme.2019.08.008
  43. A. Roointan, T. Ahmad Mir, S. Ibrahim Wani, R. Mati Ur, K. K. Hussain, B. Ahmed, S. Abrahim, A. Savardashtaki, G. Gandomani, M. Gandomani, R. Chinnappan, and M. H. Akhtar, Early detection of lung cancer biomarkers through biosensor technology: A review, J. Pharm. Biomed. Anal., 164, 93-103 (2019). https://doi.org/10.1016/j.jpba.2018.10.017
  44. G. Luka, A. Ahmadi, H. Najjaran, E. Alocilja, M. DeRosa, K. Wolthers, A. Malki, H. Aziz, A. Althani, and M. Hoorfar, Microfluidics integrated biosensors: A leading technology towards lab-on-a-chip and sensing applications, Sensors, 15, 30011-30031 (2015). https://doi.org/10.3390/s151229783
  45. P. Yanez-Sedeno, S. Campuzano, and J. M. Pingarron, Multiplexed electrochemical immunosensors for clinical biomarkers, Sensors, 17, 965 (2017). https://doi.org/10.3390/s17050965
  46. L. Huang, S. Tian, W. Zhao, K. Liu, X. Ma, and J. Guo, Multiplexed detection of biomarkers in lateral-flow immunoassays, Analyst, 145, 2828-2840 (2020). https://doi.org/10.1039/C9AN02485A
  47. Y. Gao, W. Huo, L. Zhang, J. Lian, W. Tao, C. Song, J. Tang, S. Shi, and Y. Gao, Multiplex measurement of twelve tumor markers using a GMR multi-biomarker immunoassay biosensor, Biosens. Bioelectron., 123, 204-210 (2019). https://doi.org/10.1016/j.bios.2018.08.060
  48. M. Johari-Ahar, P. Karami, M. Ghanei, A. Afkhami, and H. Bagheri, Development of a molecularly imprinted polymer tailored on disposable screen-printed electrodes for dual detection of EGFR and VEGF using nano-liposomal amplification strategy, Biosens. Bioelectron., 107, 26-33 (2018). https://doi.org/10.1016/j.bios.2018.02.005
  49. R.-I. Stefan-van Staden, R.-M. Ilie-Mihai, and S. Gurzu, Simultaneous determination of carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), and serum protein p53 in biological samples with protoporphyrin IX (PIX) used for recognition by stochastic microsensors, Anal. Lett., 53, 2545-2558 (2020). https://doi.org/10.1080/00032719.2020.1747480