DOI QR코드

DOI QR Code

Synthesis of Mesoporous SAPO-34 Catalyst Using Chitosan and Its DTO Reaction

키토산을 이용한 메조 세공 SAPO-34 촉매의 합성 및 DTO 반응

  • Yoon, Young-Chan (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Song, Kang (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lim, Jeong-Hyeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Park, Chu-Sik (Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 윤영찬 (충남대학교 응용화학공학과) ;
  • 송강 (충남대학교 응용화학공학과) ;
  • 임정현 (충남대학교 응용화학공학과) ;
  • 박주식 (한국에너지기술연구원) ;
  • 김영호 (충남대학교 응용화학공학과)
  • Received : 2021.03.10
  • Accepted : 2021.04.28
  • Published : 2021.06.10

Abstract

Effects of chitosan as a mesopore directing agent of SAPO-34 catalysts were investigated to improve the catalytic lifetime in DTO reaction. The synthesized catalysts were characterized by XRD, SEM, N2 adsorption-desorption isotherm and NH3-temperature programmed desorption (TPD). The modified SAPO-34 catalysts prepared by varying the added amount of chitosan showed the same cubic morphology and chabazite structure as the conventional SAPO-34 catalyst. As the added amount of chitosan increased to 3 wt%, the surface area, mesopore volume and concentration of weak acid sites of modified SAPO-34 catalysts increased. The modified SAPO-34 catalysts showed enhanced catalytic lifetime and high selectivity for light olefins in the DTO reaction. In particular, the SAPO-CHI 3 catalyst (3 wt%) exhibited the longest catalytic lifetime than that of the conventional SAPO-34. Therefore, it was confirmed that chitosan was a suitable material as a mesopore directing agent to delay deactivation of the SAPO-34 catalyst.

DTO (dimethyl ether to olefins) 반응에서 촉매의 성능 향상을 목적으로 SAPO-34 촉매의 메조 세공 유도제로서 키토산의 효과를 연구했다. 합성된 촉매의 특성은 XRD, SEM, N2 adsorption-desorption isotherm 및 NH3-TPD로 분석하였다. 키토산 첨가량을 변수로 하여 개조된 SAPO-34 촉매는 기존의 SAPO-34 촉매와 동일한 입방체 형태와 카바자이트 구조를 나타내었다. 키토산의 첨가량을 3 wt%까지 증가함에 따라 제조된 촉매의 표면적 및 메조 세공 부피는 향상되었으며 약산 점의 농도 또한 증가하는 것으로 나타났다. 개조된 SAPO-34 촉매는 DTO 반응에서 향상된 촉매 수명과 높은 경질 올레핀 선택도를 나타냈다. 특히, SAPO-CHI 3 촉매(3 wt%)는 기존의 SAPO-34 촉매 수명(82 min)과 비교하여 가장 우수한 촉매 수명(140 min)을 나타냈다. 따라서 키토산이 SAPO-34 촉매의 비활성화를 억제하기 위한 메조 세공 유도제로 사용하기에 적합한 물질임을 확인했다.

Keywords

Acknowledgement

This work was supported by research fund of Chungnam National University.

References

  1. T. Ren, M. K. Patel, and K. Blok, Steam cracking and methane to olefins: Energy use, CO2 emissions and production costs, Energy, 33, 817-833 (2008). https://doi.org/10.1016/j.energy.2008.01.002
  2. Y. K. Park, J. Y. Jeon, S. Y. Han, J. R. Kim, and C. W. Lee, Catalytic cracking of naphtha into light olefins, Korean Chem. Eng. Res., 41, 549-557 (2003).
  3. Y. Yoshimura, N. Kijima, T. Hayakawa, K. Murata, K. Suzuki, F. Mizukami, K. Matano, T. Konishi, T. Oikawa, M. Saito, T. Shiojima, K. Shiozawa, K. Wakui, G. Sawada, K. Sato, S. Matsuo, and N. Yamaoka, Catalytic cracking of naphtha to light olefins, Catal. Surv. Jpn., 4, 157-167 (2001). https://doi.org/10.1023/A:1011463606189
  4. E. S. Yi, and S. R. Hong, Gas permeation characteristics of PEBAX-PEI composite membranes containing ZIF-8 modified with amine, Appl. Chem. Eng., 31, 679-687 (2020). https://doi.org/10.14478/ACE.2020.1080
  5. J. Y. Jung, Y. M. Lee, and E. Y. Lee, Value-added utilization of lignin residue from pretreatment process of lignocellulosic biomass, Appl. Chem. Eng., 27, 135-144 (2016). https://doi.org/10.14478/ace.2016.1016
  6. T. Ren, M. Patel, and K. Blok, Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes, Energy, 31, 425-451 (2006). https://doi.org/10.1016/j.energy.2005.04.001
  7. T. A. Semelsberger, R. L. Borup, and H. L. Greene, Dimethyl ether (DME) as an alternative fuel, J. Power Sources, 156, 497-511 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.082
  8. A. T. Najafabadi, S. Fatemi, M. Sohrabi, and M. Salmasi, Kinetic modeling and optimization of the operating condition of MTO process on SAPO-34 catalyst, J. Ind. Eng. Chem., 18, 29-37 (2012). https://doi.org/10.1016/j.jiec.2011.11.088
  9. N. Fatourehchi, M. Sohrabi, S. J. Royaee, and S. M. Mirarefin, Preparation of SAPO-34 catalyst and presentation of a kinetic model for methanol to olefin process (MTO), Chem. Eng. Res. Des., 89, 811-816 (2011). https://doi.org/10.1016/j.cherd.2010.10.007
  10. X. Wu, M. G. Abraha, and R. G. Anthony, Methanol conversion on SAPO-34: Reaction condition for fixed-bed reactor, Appl. Catal. A: Gen., 260, 63-69 (2004). https://doi.org/10.1016/j.apcata.2003.10.011
  11. S. C. Baek, Y. J. Lee, and G. W. Jeon, Effect of water addition on the conversion of dimethyl ether to light olefins over SAPO-34, Korean Chem. Eng. Res., 44, 345-349 (2006).
  12. H. S. Kim, S. G. Lee, K. H. Choi, D. H. Lee, C. S. Park, and Y. H. Kim, Effects of Co/Al and Si/Al molar ratios on DTO (dimethyl ether to olefins) reaction over CoAPSO-34 catalyst, Appl. Chem. Eng., 26, 138-144 (2015). https://doi.org/10.14478/ace.2014.1128
  13. Z. Jie, C. Yu, N. Zeeshan, W. Yao, and W. Fei, In situ synthesis of SAPO-34 zeolites in kaolin microspheres for a fluidized methanol or dimethyl ether to olefins process, Chin. J. Chem. Eng., 18, 979-987 (2010). https://doi.org/10.1016/S1004-9541(09)60156-7
  14. I. M. Dahl and S. Kolboe, On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34: I. Isotopic labeling studies of the co-reaction of ethene and methanol, J. Catal., 149, 458-464 (1994). https://doi.org/10.1006/jcat.1994.1312
  15. Y. J. Lee, S. C. Baek, and K. W. Jun, Methanol conversion on SAPO-34 catalysts prepared by mixed template method, Appl. Catal. A: Gen., 329, 130-136 (2007). https://doi.org/10.1016/j.apcata.2007.06.034
  16. B. G. Min and G. Seo, Mechanism of methanol conversion over zeolite and molecular sieve catalysts, Korean Chem. Eng. Res., 44, 329-339 (2006).
  17. A. T. Aguayo, A. E. Campo, A. G. Gayubo, A. Tarrio, and J. Bilbao, Deactivation by coke of a catalyst based on a SAPO-34 in the transformation of methanol into olefins, J. Chem. Technol. Biotechnol., 74, 315-321 (1999). https://doi.org/10.1002/(SICI)1097-4660(199904)74:4<315::AID-JCTB34>3.0.CO;2-G
  18. J. F. Haw, W. Song, D. M. Marcus, and J. B. Nicholas, The mechanism of methanol to hydrocarbon catalysis, Acc. Chem. Res., 36, 317-326 (2003). https://doi.org/10.1021/ar020006o
  19. K. H. Choi, D. H. Lee, H. S. Kim, C. S. Park, and Y. H. Kim, Effects of acid treatment of SAPO-34 on the catalytic lifetime and light olefin selectivity during DTO reaction, Appl. Chem. Eng., 26, 217-223 (2015). https://doi.org/10.14478/ace.2015.1020
  20. E. J. Kang, D. H. Lee, H. S. Kim, K. H. Choi, C. S. Park, and Y. H. Kim, Conversion of DME to light olefins over mesoporous SAPO-34 catalyst prepared by carbon nanotube template, Appl. Chem. Eng., 25, 34-40 (2014). https://doi.org/10.14478/ace.2013.1093
  21. Y. Cui, Q. Zhang, J. He, Y. Wang, and F. Wei, Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins, Particuology, 11, 468-474 (2013). https://doi.org/10.1016/j.partic.2012.12.009
  22. X. Chen, A. Vicente, Z. Qin, V. Ruaux, J. P. Gilson, and V. Valtchev, The preparation of hierarchical SAPO-34 crystals via post-synthesis fluoride etching, Chem. Commun., 52, 3512-3515 (2016). https://doi.org/10.1039/C5CC09498D
  23. A. K. Singh, R. Yadav, and A. Sakthivel, Synthesis, characterization, and catalytic application of mesoporous SAPO-34 (MESO-SAPO-34) molecular sieves, Micropor. Mesopor. Mater., 181, 166-174 (2013). https://doi.org/10.1016/j.micromeso.2013.07.031
  24. J. Y. Kim, J. Kim, S. T. Yang, and W. S. Ahn, Mesoporous SAPO-34 with amine-grafting for CO2 capture, Fuel, 108, 515-520 (2013). https://doi.org/10.1016/j.fuel.2012.12.020
  25. Q. Sun, N. Wang, D. Xi, M. Yang, and J. Yu, Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance, Chem. Commun., 50, 6502-6505 (2014). https://doi.org/10.1039/c4cc02050b
  26. Q. Sun, N. Wang, G. Guo, X. Chen, and J. Yu, Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro-meso-macroporosity showing superior MTO performance, J. Mater. Chem. A, 3, 19783-19789 (2015). https://doi.org/10.1039/C5TA04642D
  27. K. Song, Y. C. Yoon. C. S. Park, and Y. H. Kim, Effect of etching treatment of SAPO-34 catalyst on dimethyl ether to olefins reaction, Appl. Chem. Eng., 32, 20-27 (2021). https://doi.org/10.14478/ACE.2020.1091
  28. T. Witoon, S. Tepsarn, P. Kittipokin, B. Embley, and M. Chareonpanich, Effect of pH and chitosan concentration on precipitation and morphology of hierarchical porous silica, J. Non-Cryst. Solids, 357, 3513-3519 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.06.029
  29. T. Witoon and M. Chareonpanich, Synthesis of hierarchical meso-macroporous silica monolith using chitosan as biotemplate and its application as polyethyleneimine support for CO2 capture, Mater. Lett., 81, 181-184 (2012). https://doi.org/10.1016/j.matlet.2012.04.126
  30. T. Witoon, M. Chareonpanich, and J. Limtrakul, Size control of nanostructured silica using chitosan template and fractal geometry: Effect of chitosan/silica ratio and aging temperature, J. Sol-Gel Sci. Technol., 56, 270-277 (2010). https://doi.org/10.1007/s10971-010-2303-9
  31. D. Li, Y. Huang, K. R. Ratinac, S. P. Ringer, and H. Wang, Zeolite crystallization in crosslinked chitosan hydrogels: Crystal size control and chitosan removal, Micropor. Mesopor. Mater., 116, 416-423 (2008). https://doi.org/10.1016/j.micromeso.2008.04.032
  32. V. Pedroni, P. C. Schulz, M. E. G. Ferreira, and M. A. Morini, A chitosan-templated monolithic siliceous mesoporous-macroporous material, Colloid Polym. Sci., 278, 964-971 (2000). https://doi.org/10.1007/s003960000348
  33. Y. H. Song, H. J. Chae, K. E. Jeong, C. U. Kim, C. H. Shin, and S. Y. Jeong, The effect of crystal size of SAPO-34 synthesized using various structure directing agents for MTO reaction, Appl. Chem. Eng., 19, 559-567 (2008).
  34. F. Lonyi and J. Valyon, On the interpretation of the NH3-TPD patterns of H-ZSM-5 and H-mordenite, Micropor. Mesopor. Mater., 47, 293-301 (2001). https://doi.org/10.1016/S1387-1811(01)00389-4
  35. P. Wang, D. Yang, J. Hu, J. Xu, and G. Lu, Synthesis of SAPO-34 with small and tunable crystallite size by two-step hydrothermal crystallization and its catalytic performance for MTO reaction, Catal. Today, 212, 62.e1-62.e8 (2013). https://doi.org/10.1016/j.cattod.2012.08.027
  36. H. S. Kim, S. G. Lee, Y. H. Kim, D. H. Lee, J. B. Lee, and C. S. Park, Improvement of lifetime using transition metal-incorporated SAPO-34 catalysts in conversion of dimethyl ether to light olefins, J. Nanomater., 2013, 1-9 (2013).