DOI QR코드

DOI QR Code

Preparation and Characterization of Reduced Graphene Oxide with Carboxyl Groups-Gold Nanorod Nanocomposite with Improved Photothermal Effect

향상된 광열 효과를 갖는 카르복실화된 환원 그래핀옥사이드-골드나노막대 나노복합체의 제조 및 특성 분석

  • Lee, Seunghwa (Graduate school of Energy Science and Technology, Chungnam National University) ;
  • Kim, So Yeon (Graduate school of Energy Science and Technology, Chungnam National University)
  • 이승화 (충남대학교, 에너지과학기술대학원) ;
  • 김소연 (충남대학교, 에너지과학기술대학원)
  • Received : 2021.04.16
  • Accepted : 2021.04.29
  • Published : 2021.06.10

Abstract

Photothermal therapy is a treatment that necrotizes selectively the abnormal cells, in particular cancer cells, which are more vulnerable to heat than normal cells, using the heat generated when irradiating light. In this study, we synthesized a reduced graphene oxide with carboxyl groups (CRGO)-gold nanorod (AuNR) nanocomposite for photothermal treatment. Graphene oxide (GO) was selectively reduced and exfoliated at high temperature to synthesize CRGO, and the length of AuNR was adjusted according to the amount of AgNO3, to synthesize AuNR with a strong absorption peak at 880 nm, as an ideal photothermal agent. It was determined through FT-IR, thermogravimetric and fluorescence analyses that more carboxyl groups were conjugated with CRGO over RGO. In addition, CRGO exhibited excellent stability in aqueous solutions compared to RGO due to the presence of carboxylic acid. The CRGO-AuNR nanocomposites fabricated by electrostatic interaction have an average size of ~317 nm with a narrow size distribution. It was confirmed that under radiation with a near-infrared 880 nm laser which has an excellent tissue transmittance, the photothermal effect of CRGO-AuNR nanocomposites was greater than that of AuNR due to the synergistic effect of the two photothermal agents, CRGO and AuNR. Furthermore, the results of cancer cell toxicity by photothermal effect revealed that CRGO-AuNR nanocomposites showed superb cytotoxic properties. Therefore, the CRGO-AuNR nanocomposites are expected to be applied to the field of anticancer photothermal therapy based on their stable dispersibility and improved photothermal effect.

광열 치료(photothermal therapy)란 빛을 조사하여 열을 발생시킴으로써 정상세포보다 열에 약한 비정상 세포, 특히 암세포를 선택적으로 괴사시키는 치료법이다. 본 연구에서는 광열 치료를 위한 카르복실화된 환원 그래핀옥사이드(reduced graphene oxide with carboxyl groups, CRGO)-골드나노막대(gold nanorod, AuNR) 나노복합체를 합성하고자 하였다. 이를 위해 그래핀옥사이드(graphene oxide, GO)를 고온에서 선택적으로 환원, 박리하여 CRGO를 합성하였고, AgNO3의 양에 따라 AuNR의 길이를 조절하여 880 nm에서 강한 흡광 특성을 나타내는 AuNR를 합성하여 광열 인자로 사용하였다. 일반적인 방법으로 환원된 RGO에 비해 CRGO에 상대적으로 많은 카르복실기가 결합되어 있음을 FT-IR, 열 중량 분석 및 형광 분석을 통해 확인하였다. 또한, RGO에 비해 많은 carboxyl group이 결합된 CRGO는 수용액상에서 우수한 안정성을 나타내었다. 정전기적 상호작용을 통해 합성된 CRGO-AuNR 나노복합체는 약 317 nm의 균일한 크기와 좁은 크기 분포를 보였다. CRGO-AuNR 나노복합체는 두 가지 광열 인자인 CRGO와 AuNR의 synergistic effect로 인하여 조직 투과도가 우수한 근적외선 880 nm 레이저의 조사에 의한 광열 효과가 AuNR보다 2배 이상 향상 되는 것을 확인하였다. 또한, 광열 효과에 의한 암세포 독성 분석 결과, CRGO-AuNR 나노복합체가 가장 우수한 세포 독성 특성을 나타내었다. 따라서 CRGO-AuNR 나노복합체는 안정된 분산성과 향상된 광열 효과를 기반으로 항암 광열 요법 분야에 응용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1H1A2011218).

References

  1. N. Li,Q. Sun, Z. Yu, X. Gao, W. Pan, X. Wan, and B. Tang, Nuclear-targeted photothermal therapy prevents cancer recurrence with near-infrared triggered copper sulfide nanoparticles, ACS Nano, 12(6), 5197-5206 (2018). https://doi.org/10.1021/acsnano.7b06870
  2. Z. Li, Y. Yang, J. Yao, Z. Shao, and X. Chen, A facile fabrication of silk/MoS2 hybrids for Photothermal therapy, Mater. Sci. Eng. C, 79, 123-129 (2017). https://doi.org/10.1016/j.msec.2017.05.010
  3. Z. Ma, J. Zhang, W. Zhang, M. F. Foda, Y. Zhang, L. Ge, and H. Han, Intracellular Ca2+ cascade guided by NIR-II photothermal switch for specific tumor therapy, iScience, 23(5), 101049 (2020). https://doi.org/10.1016/j.isci.2020.101049
  4. Y. A. Cheon, J. H. Bae, and B. G. Chung, Reduced graphene oxide nanosheet for chemo-photothermal therapy, Langmuir., 32(11), 2731-2736 (2016). https://doi.org/10.1021/acs.langmuir.6b00315
  5. C. Song, F. Li, X. Guo, W. Chen, C. Dong, J. Zhang, J. Zhang, and L. Wang, Gold nanostars for cancer cell-targeted SERS-imaging and NIR light-triggered plasmonic photothermal therapy (PPTT) in the first and second biological windows, J. Mater. Chem. B, 7(12), 2001-2008 (2019). https://doi.org/10.1039/c9tb00061e
  6. H. Wang, J. Chang, M. Shi, W. Pan, N. Li, and B. Tang, A dual-targeted organic photothermal agent for enhanced photothermal therapy, Angew. Chem. Int. Ed., 58(4), 1057-1061 (2019). https://doi.org/10.1002/anie.201811273
  7. W. Wei, X. Zhang, S. Zhang, G. Wei, and Z. Su, Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review, Mater. Sci. Eng. C, 104, 109891 (2019). https://doi.org/10.1016/j.msec.2019.109891
  8. W. Xu, J. Qian, G. Hou, Y. Wang, J. Wang, T. Sun, L. Ji, A. Suo, and Y. Yao, A dual-targeted hyaluronic acid-gold nanorod platform with triple-stimuli responsiveness for photodynamic/photothermal therapy of breast cancer, Acta Biomater., 83, 400-413 (2019). https://doi.org/10.1016/j.actbio.2018.11.026
  9. J. Wang, C. Zhu, J. Han, N. Han, J. Xi, L. Fan, and R. Guo, Controllable synthesis of gold nanorod/conducting polymer core/shell hybrids toward in vitro and in vivo near-infrared photothermal therapy, ACS Appl. Mater. Interfaces, 10(15), 12323-12330 (2018). https://doi.org/10.1021/acsami.7b16784
  10. S. Qi, L. Lu, F. Zhou, Y. Chen, M. Xu, L. Chen, X. Yu, W. R. Chen, and Z. Zhang, Neutrophil infiltration and whole-cell vaccine elicited by N-dihydrogalactochitosan combined with NIR phototherapy to enhance antitumor immune response and T cell immune memory, Theranostics, 10(4), 1814 (2020). https://doi.org/10.7150/thno.38515
  11. Y. Zhang, Q. Wan, and N. Yang, Recent advances of porous graphene: Synthesis, functionalization, and electrochemical applications, Small, 15(48), 1903780 (2019). https://doi.org/10.1002/smll.201903780
  12. F. Liu, C. Wang, X. Sui, M. A. Riaz, M. Xu, L. Wei, and Y. Chen, Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential, Carbon Energy, 1(2), 173-199 (2019). https://doi.org/10.1002/cey2.14
  13. X. Zhang, L. Wang, Q. Lu, and D. L. J. A. a. m. Kaplan, Mass production of biocompatible graphene using silk nanofibers, ACS Appl. Mater. Interfaces, 10(27), 22924-22931 (2018). https://doi.org/10.1021/acsami.8b04777
  14. S. Priyadarsini, S. Mohanty, S. Mukherjee, S. Basu, and M. Mishra, Graphene and graphene oxide as nanomaterials for medicine and biology application, J. Nanostr. Chem., 8(2), 123-137 (2018). https://doi.org/10.1007/s40097-018-0265-6
  15. A. M. Pinto, I. C. Goncalves, and F. D. Magalhaes, Graphene-based materials biocompatibility: A review, Colloids Surf., 111, 188-202 (2013). https://doi.org/10.1016/j.colsurfb.2013.05.022
  16. X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai, Nano-graphene oxide for cellular imaging and drug delivery, Nano Res., 1(3), 203-212 (2008). https://doi.org/10.1007/s12274-008-8021-8
  17. T. A. Tabish, M. Z. I. Pranjol, H. Hayat, A. A. Rahat, T. M. Abdullah, J. L. Whatmore, and S. Zhang, In vitro toxic effects of reduced graphene oxide nanosheets on lung cancer cells, Nanotechnology, 28(50), 504001 (2017). https://doi.org/10.1088/0957-4484/28/50/504001
  18. K. Yang, H. Gong, X. Shi, J. Wan, Y. Zhang, and Z. Liu, In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration, Biomaterials, 34(11), 2787-2795 (2013). https://doi.org/10.1016/j.biomaterials.2013.01.001
  19. A. Raslan, L. S. Del Burgo, J. Ciriza, and J. L. Pedraz, Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine, Int. J. Pharm., 580, 119226 (2020). https://doi.org/10.1016/j.ijpharm.2020.119226
  20. T. K. Sau, and C. Murphy, Seeded high yield synthesis of short Au nanorods in aqueous solution, Langmuir, 20(15), 6414-6420 (2004). https://doi.org/10.1021/la049463z
  21. M. R. Das, R. K. Sarma, R. Saikia, V. S. Kale, M. V. Shelke, and P. Sengupta, Synthesis of silver nanoparticles in an aqueous suspension of graphene oxide sheets and its antimicrobial activity, Colloids Surf. B, Biointerfaces, 83(1), 16-22 (2011). https://doi.org/10.1016/j.colsurfb.2010.10.033
  22. S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, Hydrazine-reduction of graphite-and graphene oxide, Carbon Energy, 49(9), 3019-3023 (2011). https://doi.org/10.1016/j.carbon.2011.02.071
  23. K. Turcheniuk, T. Dumych, R. Bilyy, V. Turcheniuk, J. Bouckaert, V. Vovk, V. Chopyak, V. Zaitsev, P. Mariot, and N. Prevarskaya, Plasmonic photothermal cancer therapy with gold nanorods/reduced graphene oxide core/shell nanocomposites, RSC Adv., 6(2), 1600-1610 (2016). https://doi.org/10.1039/C5RA24662H
  24. M. Liu and P. Guyot-Sionnest, Mechanism of silver (I)-assisted growth of gold nanorods and bipyramids, J. Phys. Chem. B, 109(47), 22192-22200 (2005). https://doi.org/10.1021/jp054808n
  25. X. Zheng, H. Yu, S. Yue, R. Xing, Q. Zhang, Y. Liu, and B. Zhang, Functionalization of graphene and dielectric property relationships in PVDF/graphene nanosheets composites, Int. J. Electrochem. Sci., 13, 1-13 (2018).
  26. P. Cui, J. Lee, E. Hwang, and H. Lee, One-pot reduction of graphene oxide at subzero temperatures, Chem. Commun., 47(45), 12370-12372 (2011). https://doi.org/10.1039/c1cc15569e
  27. J. Li, D. Liu, B. Li, J. Wang, S. Han, L. Liu, and H. Wei, A bio-inspired nacre-like layered hybrid structure of calcium carbonate under the control of carboxyl graphene, CrystEngComm, 17(3), 520-525 (2015). https://doi.org/10.1039/c4ce01632g
  28. C. T. Chien, S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. S. Chen, L. C. Chen, K. H. Chen, T. Nemoto, and S. Isoda, Tunable photoluminescence from graphene oxide, Angew. Chem. Int. Ed., 51(27), 6662-6666 (2012). https://doi.org/10.1002/anie.201200474
  29. C. Yue, C. Zhang, G. Alfranca, Y. Yang, X. Jiang, Y. Yang, F. Pan, J. M. de la Fuente, and D. Cui, Near-infrared light triggered ROS-activated theranostic platform based on Ce6-CPT-UCNPs for simultaneous fluorescence imaging and chemo-photodynamic combined therapy, Theranostics, 6(4), 456 (2016). https://doi.org/10.7150/thno.14101
  30. Q. Sun, Q. You, X. Pang, X. Tan, J. Wang, L. Liu, F. Guo, F. Tan, and N. Li, A photoresponsive and rod-shape nanocarrier: Single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped & Ce6-doped mesoporous silica nanorods, Biomaterials, 122, 188-200 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.021
  31. W. Hou, F. Xia, C. S. Alves, X. Qian, Y. Yang, and D. Cui, MMP2-targeting and redox-responsive PEGylated chlorin e6 nanoparticles for cancer near-infrared imaging and photodynamic therapy, ACS Appl. Mater. Interfaces, 8(2), 1447-1457 (2016). https://doi.org/10.1021/acsami.5b10772
  32. N. SreeHarsha, R. Maheshwari, B. E. Al-Dhubiab, M. Tekade, M. C. Sharma, K. N. Venugopala, R. K. Tekade, and A. M. Alzahrani, Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy, Int. J. Nanomedicine, 14, 7419 (2019). https://doi.org/10.2147/IJN.S211224
  33. F. Wang, Q. Sun, B. Feng, Z. Xu, J. Zhang, J. Xu, L. Lu, H. Yu, M. Wang, and Y. Li, Polydopamine-functionalized graphene oxide loaded with gold nanostars and doxorubicin for combined photothermal and chemotherapy of metastatic breast cancer, Adv. Healthc. Mater., 5(17), 2227-2236 (2016). https://doi.org/10.1002/adhm.201600283
  34. H. Hashemzadeh and H. J. A. S. S. Raissi, Understanding loading, diffusion and releasing of doxorubicin and paclitaxel dual delivery in graphene and graphene oxide carriers as highly efficient drug delivery systems, Appl. Surf. Sci., 500, 144220 (2020). https://doi.org/10.1016/j.apsusc.2019.144220