과제정보
This research was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2019R1I1A3A01041454) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03024962).
참고문헌
- F. A. A. Paz, J. Klinowski, S. M. F. Vilela, J. P. C. Tome, J. A. S. Cavaleiro, and J. Rocha, Ligand design for functional metal-organic frameworks, Chem. Soc. Rev., 41, 1088-1110 (2012). https://doi.org/10.1039/C1CS15055C
- C. K. Brozek and M. Dinca, Cation exchange at the secondary building units of metal-organic frameworks, Chem. Soc. Rev., 43, 5456-5467 (2014). https://doi.org/10.1039/C4CS00002A
- H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi, The chemistry and applications of metal-organic frameworks, Science, 341, 123044 (2013).
- E. A. Tomic, Thermal stability of coordination polymers, J. Appl. Polym. Sci., 9, 3745-3752 (1965). https://doi.org/10.1002/app.1965.070091121
- O. M. Yaghi, G. Li, and H. Li, Selective binding and removal of guests in a microporous metal-organic framework, Nature, 378, 703-706 (1995). https://doi.org/10.1038/378703a0
- H. Li, M. Eddaoudi, M. O'Keeffe, and O. M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature, 402, 276-279 (1999). https://doi.org/10.1038/46248
- J.-Z. Wei, F.-X. Gong, X.-J. Sun, Y. Li, T. Zhang, X.-J. Zhao, and F.-M. Zhang, Rapid and low-cost electrochemical synthesis of UiO-66-NH2 with enhanced fluorescence detection performance, Inorg. Chem., 58, 6742-6747 (2019). https://doi.org/10.1021/acs.inorgchem.9b00157
- H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R. Q. Snurr, M. O'Keeffe, J. Kim, and O. M. Yaghi, Ultrahigh porosity in metal-organic frameworks, Science, 329, 424-428 (2010). https://doi.org/10.1126/science.1192160
- J. Lei, R. Qian, P. Ling, L. Cui, and H. Ju, Design and sensing applications of metal-organic framework composites, Trends Anal. Chem., 58, 71-78 (2014). https://doi.org/10.1016/j.trac.2014.02.012
- Y. Cui, B. Chen, and G. Qian, Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications, Coord. Chem. Rev., 273, 76-86 (2014). https://doi.org/10.1016/j.ccr.2013.10.023
- S. Achmann, G. Hagen, J. Kita, I.M. Malkowsky, C. Kiener, and R. Moos, Metal-organic frameworks for sensing applications in the gas phase, Sensors, 9, 1574-1589 (2009). https://doi.org/10.3390/s90301574
- J. L. Wang, C. Wang, and W. Lin, Metal-organic frameworks for light harvesting and photocatalysis, ACS Catal., 2, 2630-2640 (2012). https://doi.org/10.1021/cs3005874
- M. A. Nasalevich, M. Van Der Veen, F. Kapteijn, and J. Gascon, Metal-organic frameworks as heterogeneous photocatalysts: Advantages and challenges, CrystEngComm, 16, 4919-4926 (2014). https://doi.org/10.1039/C4CE00032C
- M. A. Nasalevich, M. G. Goesten, T. J. Savenije, F. Kapteijn, and J. Gascon, Enhancing optical absorption of metal-organic frameworks for improved visible light photocatalysis, Chem. Commun., 49, 10575-10577 (2013). https://doi.org/10.1039/C3CC46398B
- A. Morozan and F. Jaouen, Metal organic frameworks for electrochemical applications, Energy Environ. Sci., 5, 9269-9290 (2012). https://doi.org/10.1039/c2ee22989g
- J. Yang, P. Xiong, C. Zheng, H. Qiu, and M. Wei, Metal-organic frameworks: A new promising class of materials for a high performance supercapacitor electrode, J. Mater. Chem. A, 2, 16640-16644 (2014). https://doi.org/10.1039/C4TA04140B
- N. Campagnol, R. Romero-Vara, W. Deleu, L. Stappers, K. Binnemans, D.E. De Vos, and J. Fransaer, A hybrid supercapacitor based on porous carbon and the metal-organic framework MIL-100 (Fe), ChemElectroChem, 1, 1182-1188 (2014). https://doi.org/10.1002/celc.201402022
- K. F. Babu, M. A. Kulandainathan, I. Katsounaros, L. Rassaei, A. D. Burrows, P. R. Raithby, and F. Marken, Electrocatalytic activity of basoliteTM F300 metal-organic-framework structures, Electrochem. Commun., 12, 632-635 (2010). https://doi.org/10.1016/j.elecom.2010.02.017
- J. R. Li, J. Sculley, and H. C. Zhou, Metal-organic frameworks for separations, Chem. Rev., 112, 869-932 (2012). https://doi.org/10.1021/cr200190s
- S. Ma and H. C. Zhou, Gas storage in porous metal-organic frameworks for clean energy applications, Chem. Commun., 46, 44-53 (2010). https://doi.org/10.1039/B916295J
- R. Sabouni, H. Kazemian, and S. Rohani, Carbon dioxide capturing technologies: A review focusing on metal organic framework materials (MOFs), Environ. Sci. Pollut. Res., 21, 5427-5449 (2014). https://doi.org/10.1007/s11356-013-2406-2
- S. Couck, J.F.M. Denayer, G. V. Baron, T. Remy, J. Gascon, and F. Kapteijn, An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4, J. Am. Chem. Soc., 131, 6326-6327 (2009). https://doi.org/10.1021/ja900555r
- J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, and C. Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev., 43, 6011-6061 (2014). https://doi.org/10.1039/C4CS00094C
- J. Gascon, A. Corma, F. Kapteijn, and F. X. Llabres I Xamena, Metal organic framework catalysis: Quo vadis?, ACS Catal., 4, 361-378 (2014). https://doi.org/10.1021/cs400959k
- T. Zhang and W. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis, Chem. Soc. Rev., 43, 5982-5993 (2014). https://doi.org/10.1039/C4CS00103F
- Y. Li, C. Chen, X. Sun, J. Dou, and M. Wei, Metal-organic frameworks at interfaces in dye-sensitized solar cells, ChemSusChem, 7, 2469-2472 (2014). https://doi.org/10.1002/cssc.201402143
- M. Zhang, Z. Y. Gu, M. Bosch, Z. Perry, and H. C. Zhou, Biomimicry in metal-organic materials, Coord. Chem. Rev., 293, 327-356 (2015). https://doi.org/10.1016/j.ccr.2014.05.031
- J. Della Rocca, D. Liu, and W. Lin, Nanoscale metal-organic frameworks for biomedical imaging and drug delivery, Acc. Chem. Res., 44, 957-968 (2011). https://doi.org/10.1021/ar200028a
- Y. Liu, Z. Ng, E. A. Khan, H. K. Jeong, C. bun Ching, and Z. Lai, Synthesis of continuous MOF-5 membranes on porous α-alumina substrates, Microporous Mesoporous Mater., 118, 296-301 (2009). https://doi.org/10.1016/j.micromeso.2008.08.054
- J. R. Li, R. J. Kuppler, and H. C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem. Soc. Rev., 38, 1477-1504 (2009). https://doi.org/10.1039/b802426j
- O. Shekhah, H. Wang, D. Zacher, R. A. Fischer, and C. Woll, Growth mechanism of metal-organic frameworks: Insights into the nucleation by employing a step-by-step route, Angew. Chem. Int. Ed., 48, 5038-5041 (2009). https://doi.org/10.1002/anie.200900378
- O. Shekhah, H. Wang, M. Paradinas, C. Ocal, B. Schupbach, A. Terfort, D. Zacher, R. A. Fischer, and C. Woll, Controlling interpenetration in metal-organic frameworks by liquid-phase epitaxy, Nat. Mater., 8, 481-484 (2009). https://doi.org/10.1038/nmat2445
- X.-L. Liu, Y.-S. Li, G.-Q. Zhu, Y.-J. Ban, L.-Y. Xu, and W.-S. Yang, An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols, Angew. Chem., 123, 10824-10827 (2011). https://doi.org/10.1002/ange.201104383
- F. Zhang, X. Zou, W. Feng, X. Zhao, X. Jing, F. Sun, H. Ren, and G. Zhu, Microwave-assisted crystallization inclusion of spiropyran molecules in indium trimesate films with antidromic reversible photochromism, J. Mater. Chem., 22, 25019-25026 (2012). https://doi.org/10.1039/c2jm34618d
- A. Schoedel, C. Scherb, and T. Bein, Oriented nanoscale films of metal-organic frameworks by room-temperature gel-layer synthesis, Angew. Chem.., 122, 7383-7386 (2010). https://doi.org/10.1002/ange.201001684
- I. Stassen, M. Styles, G. Grenci, H. Van Gorp, W. Vanderlinden, S. De Feyter, P. Falcaro, D. De Vos, P. Vereecken, and R. Ameloot, Chemical vapour deposition of zeolitic imidazolate framework thin films, Nat. Mater., 15, 304-310 (2016). https://doi.org/10.1038/nmat4509
- T. R. C. Van Assche, G. Desmet, R. Ameloot, D. E. De Vos, H. Terryn, and J. F. M. Denayer, Electrochemical synthesis of thin HKUST-1 layers on copper mesh, Microporous Mesoporous Mater., 158, 209-213 (2012). https://doi.org/10.1016/j.micromeso.2012.03.029
- N. Campagnol, T. R. C. Van Assche, M. Li, L. Stappers, M. Dinca, J. F. M. Denayer, K. Binnemans, D. E. De Vos, and J. Fransaer, On the electrochemical deposition of metal-organic frameworks, J. Mater. Chem. A., 4, 3914-3925 (2016). https://doi.org/10.1039/C5TA10782B
- F. Caddeo, R. Vogt, D. Weil, W. Sigle, M. E. Toimil-Molares, and A. W. Maijenburg, Tuning the size and shape of nanoMOFs via templated electrodeposition and subsequent electrochemical oxidation, ACS Appl. Mater. Interfaces., 11, 25378-25387 (2019). https://doi.org/10.1021/acsami.9b04449
- W. W. Lestari, R. E. Nugraha, I. D. Winarni, M. Adreane, and F. Rahmawati, Optimization on electrochemical synthesis of HKUST-1 as candidate catalytic material for green diesel production, AIP Conf. Proc., American Institute of Physics Inc., 020038 (2016).
- M. Li and M. Dinca, Reductive electrosynthesis of crystalline metal-organic frameworks, J. Am. Chem. Soc., 133, 12926-12929 (2011). https://doi.org/10.1021/ja2041546
- M. Li and M. Dinca, On the mechanism of MOF-5 formation under cathodic bias, Chem. Mater., 27, 3203-3206 (2015). https://doi.org/10.1021/acs.chemmater.5b00899
- D. J. Tranchemontagne, J. L. Tranchemontagne, M. O'keeffe, and O. M. Yaghi, Secondary building units, nets and bonding in the chemistry of metal-organic frameworks, Chem. Soc. Rev., 38, 1257- 1283 (2009). https://doi.org/10.1039/b817735j
- J. R. Long and O. M. Yaghi, The pervasive chemistry of metal-organic frameworks, Chem. Soc. Rev., 38, 1213-1214 (2009). https://doi.org/10.1039/b903811f
- M. Li and M. Dinca, Selective formation of biphasic thin films of metal-organic frameworks by potential-controlled cathodic electrodeposition, Chem. Sci., 5, 107-111 (2014). https://doi.org/10.1039/C3SC51815A
- G. Zhao, X. Sun, L. Zhang, X. Chen, Y. Mao, and K. Sun, A self-supported metal-organic framework derived Co3O4 film prepared by an in-situ electrochemically assistant process as Li ion battery anodes, J. Power Sources., 389, 8-12 (2018). https://doi.org/10.1016/j.jpowsour.2018.04.001
- J. L. Du, X. Y. Zhang, C. P. Li, J. P. Gao, J. X. Hou, X. Jing, Y. J. Mu, and L. J. Li, A bi-functional luminescent Zn(II)-MOF for detection of nitroaromatic explosives and Fe3+ ions, Sens. Actuators, B Chem., 257, 207-213 (2018). https://doi.org/10.1016/j.snb.2017.10.159
- L. Wang, Z. Q. Yao, G. J. Ren, S. De Han, T. L. Hu, and X. H. Bu, A luminescent metal-organic framework for selective sensing of Fe3+ with excellent recyclability, Inorg. Chem. Commun., 65, 9-12 (2016). https://doi.org/10.1016/j.inoche.2016.01.004
- S. Pal and P. K. Bharadwaj, A luminescent terbium MOF containing hydroxyl groups exhibits selective sensing of nitroaromatic compounds and Fe(III) ions, Cryst. Growth Des., 16, 5852-5858 (2016). https://doi.org/10.1021/acs.cgd.6b00930
- P. Hu, X. Zhu, X. Luo, X. Hu, and L. Ji, Cathodic electrodeposited Cu-BTC MOFs assembled from Cu(II) and trimesic acid for electrochemical determination of bisphenol A, Microchim. Acta, 187, 1-9 (2020). https://doi.org/10.1007/s00604-019-3921-8
- P. Arul, N. S. K. Gowthaman, S. A. John, and M. Tominaga, Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid, Electrochim. Acta, 354, 136673 (2020). https://doi.org/10.1016/j.electacta.2020.136673
- L. Wang, Y. Wu, R. Cao, L. Ren, M. Chen, X. Feng, J. Zhou, and B. Wang, Fe/Ni metal-organic frameworks and their binder-free thin films for efficient oxygen evolution with low overpotential, ACS Appl. Mater. Interfaces., 8, 16736-16743 (2016). https://doi.org/10.1021/acsami.6b05375
- J. Zhao, Y. Wang, J. Zhou, P. Qi, S. Li, K. Zhang, X. Feng, B. Wang, and C. Hu, A copper(II)-based MOF film for highly efficient visible-light-driven hydrogen production, J. Mater. Chem. A, 4, 7174-7177 (2016). https://doi.org/10.1039/C6TA00431H
- S. Jabarian, A. Ghaffarinejad, and H. Kazemi, Electrochemical and solvothermal syntheses of HKUST-1 metal organic frameworks and comparison of their performances as electrocatalyst for oxygen reduction reaction, Anal. Bioanal. Electrochem., 10, 1611-1619 (2018).
- W. Cao, Y. Liu, F. Xu, J. Li, D. Li, G. Du, and N. Chen, In situ electrochemical synthesis of Rod-Like Ni-MOFs as battery-type electrode for high performance hybrid supercapacitor, J. Electrochem. Soc., 167, 050503 (2020). https://doi.org/10.1149/2.0072005JES
- N. Campagnol, T. Van Assche, T. Boudewijns, J. Denayer, K. Binnemans, D. De Vos, and J. Fransaer, High pressure, high temperature electrochemical synthesis of metal-organic frameworks: Films of MIL-100 (Fe) and HKUST-1 in different morphologies, J. Mater. Chem. A, 1, 5827-5830 (2013). https://doi.org/10.1039/c3ta10419b
- K. Pirzadeh, A. A. Ghoreyshi, M. Rahimnejad, and M. Mohammadi, Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation, Korean J. Chem. Eng., 35, 974-983 (2018). https://doi.org/10.1007/s11814-017-0340-6
- F. Zhang, T. Zhang, X. Zou, X. Liang, G. Zhu, and F. Qu, Electrochemical synthesis of metal organic framework films with proton conductive property, Solid State Ionics., 301, 125-132 (2017). https://doi.org/10.1016/j.ssi.2017.01.022
- J. Vehrenberg, M. Vepsalainen, D. S. Macedo, M. Rubio-Martinez, N. A. S. Webster, and M. Wessling, Steady-state electrochemical synthesis of HKUST-1 with polarity reversal, Microporous Mesoporous Mater., 303, 110218 (2020). https://doi.org/10.1016/j.micromeso.2020.110218
- T. R. C. Van Assche, N. Campagnol, T. Muselle, H. Terryn, J. Fransaer, and J. F. M. Denayer, On controlling the anodic electrochemical film deposition of HKUST-1 metal-organic frameworks, Microporous Mesoporous Mater., 224, 302-310 (2016). https://doi.org/10.1016/j.micromeso.2015.11.060
- L. L. Jiang, X. Zeng, M. Li, M. Q. Wang, T. Y. Su, X. C. Tian, and J. Tang, Rapid electrochemical synthesis of HKUST-1 on indium tin oxide, RSC Adv., 7, 9316-9320 (2017). https://doi.org/10.1039/C6RA26646K
- K. Pirzadeh, A. A. Ghoreyshi, M. Rahimnejad, and M. Mohammadi, Optimization of electrochemically synthesized Cu3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling, Front. Chem. Sci. Eng., 14, 233- 247 (2020). https://doi.org/10.1007/s11705-019-1893-1
- K. Saini, F. Joseph, A. Ramanan, and S. Sharma Bhatia, Electrochemical synthesis of a oxalate-linked copper (II) metal organic frameworks: X-ray crystallographic structure and its magnetic properies, Mater. Today Proc., Elsevier Ltd., 9616-9621 (2017).
- S. Jabarian and A. Ghaffarinejad, Electrochemical synthesis of NiBTC metal organic framework thin layer on nickel foam: An efficient electrocatalyst for the hydrogen evolution reaction, J. Inorg. Organomet. Polym. Mater., 29, 1565-1574 (2019). https://doi.org/10.1007/s10904-019-01120-4
- S. Khazalpour, V. Safarifard, A. Morsali, and D. Nematollahi, Electrochemical synthesis of pillared layer mixed ligand metal-organic framework: DMOF-1-Zn, RSC Adv., 5, 36547-36551 (2015). https://doi.org/10.1039/C5RA04446D
- H. M. Yang, X. Liu, X. L. Song, T. L. Yang, Z. H. Liang, and C. M. Fan, In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr, Trans. Nonferrous Met. Soc. China, 25, 3987-3994 (2015). https://doi.org/10.1016/S1003-6326(15)64047-X
- R. Wei, H. Y. Chi, X. Li, D. Lu, Y. Wan, C. W. Yang, and Z. Lai, Aqueously cathodic deposition of ZIF-8 membranes for superior propylene/propane separation, Adv. Funct. Mater., 30, 1907089 (2020) https://doi.org/10.1002/adfm.201907089