DOI QR코드

DOI QR Code

복합대기오염 저감 시스템을 위한 오존 고속산화 기반 고도산화공정

An Ozone-based Advanced Oxidation Process for an Integrated Air Pollution Control System

  • 엄성현 (고등기술연구원 플랜트공정개발센터) ;
  • 홍기훈 (고등기술연구원 플랜트공정개발센터) ;
  • 황상연 (고등기술연구원 플랜트공정개발센터)
  • Uhm, Sunghyun (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Hong, Gi Hoon (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Hwang, Sangyeon (Plant Process Development Center, Institute for Advanced Engineering)
  • 투고 : 2021.04.20
  • 심사 : 2021.05.15
  • 발행 : 2021.06.10

초록

미세먼지와 함께 질소산화물, 황산화물, 휘발성 유기화합물, 암모니아 비롯한 유발물질에 대한 동시 저감기술은 엄격해지는 환경규제와 실질적인 저감효과 제고를 위해 꾸준히 주목받아 왔다. 오존산화에 의한 비수용성 질소산화물 고속산화 공정은 전통적으로 적용되고 있는 선택적 촉매환원 공정에 비해 공간절약형 시스템 적용을 가능하게 할 뿐만 아니라 운영비용 절감 측면에서 매우 효과적인 방법으로 평가되고 있으며 황산화물을 비롯한 산성가스와 동시 저감이 가능한 공정 구현이 가능하다는 장점까지 있다. 본 논문에서는 오존 고속산화 공정에 대한 기술 이슈 및 개발 동향을 소개하며 향후 산업적 이용 확대를 위한 개발 방향에 대해서 고찰하고자 한다.

Simultaneous removal technologies of multi-pollutants such as particulate matters (PMs), NOx, SOx, VOCs and ammonia have received consistent attention due to the enhancement of pollutant abatement efficiency in addition to the stringent environmental regulation and emission standard. Pretreatment of insoluble NO by an ozone oxidation can be considered to be more effective route for saving space occupation as well as operation cost in comparison with that of traditional selective catalytic reduction (SCR) process. Moreover the primary advantage of ozone oxidation process is that the simultaneous removal with acidic gas including SOx is also available. Herein, we highlight recent studies of multi-pollutant abatement via ozone oxidation process and the promising research topics for better application in industrial sectors.

키워드

과제정보

본 연구는 산업통상자원부(MOTIE)의 재원으로 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구결과입니다(No. 20009414).

참고문헌

  1. J. Plautz, Piercing the haze, Science, 361, 1060-1063 (2018). https://doi.org/10.1126/science.361.6407.1060
  2. Y-B. Zhao, P-P. Gao, W-D. Yang, and H-G. Ni, Vehicle exhaust: An overstated cause of haze in China, Sci. Total Environ., 612, 490-491 (2018). https://doi.org/10.1016/j.scitotenv.2017.08.255
  3. H-W. Park and S. Uhm, Various technologies for simultaneous removal of NOx and SO2 from flue gas, Appl. Chem. Eng., 28, 607-618 (2017). https://doi.org/10.14478/ACE.2017.1092
  4. F. Lin, Z. Wang, Z. Zhang, Y. He, Y. Zhu, J. Shao, D. Yuan, G. Chen, and K. Cen, Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury, Chem. Eng. J., 382, 123030 (2020). https://doi.org/10.1016/j.cej.2019.123030
  5. P. Cordoba, Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs, Fuel, 144, 274-286 (2015). https://doi.org/10.1016/j.fuel.2014.12.065
  6. S. Yang, X. Pan, Z. Han, D. Zhao, B. Liu, D. Zheng, and Z. Yan, Removal of NOx and SO2 from simulated ship emissions using wet scrubbing based on seawater electrolysis technology, Chem. Eng. J., 331, 8-15 (2018). https://doi.org/10.1016/j.cej.2017.08.083
  7. K. Skalska, J. S. Miller, and S. Ledakowicz, Trends in NO(x) abatement: A review, Sci. Total Environ., 408, 3976-3989 (2010). https://doi.org/10.1016/j.scitotenv.2010.06.001
  8. Z. G. Lei, C. P. Wen, and B. H. Chen, Optimization of internals for selective catalytic reduction (SCR) for NO removal, Environ. Sci. Technol., 45, 3437-3444 (2011). https://doi.org/10.1021/es104156j
  9. D. Q. Dao, L. Gasnot, K. Marschallek, A. El Bakali, and J. F. Pauwels, Experimental study of NO removal by gas re-burning and selective noncatalytic reduction using ammonia in a lab-scale reactor, Energ. Fuel, 24, 1696-1703 (2010). https://doi.org/10.1021/ef901236e
  10. X. Zhang, B. Gao, A. E. Creamer, C. Cao, and Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater., 338, 102-123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
  11. C. Dai, Y. Zhou, H. Peng, S. Huang, P. Qin, J. Zhang, Y. Yang, L. Luo, and X. Zhang, Current progress in remediation of chlorinated volatile organic compounds: A review, J. Ind. Eng. Chem., 62, 106-119 (2018). https://doi.org/10.1016/j.jiec.2017.12.049
  12. Y. S. Gao, Z. Zhang, J. W. Wu, L. H. Duan, A. Umar, L. Y. Sun, Z. H. Guo, and Q. Wang, A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases, Environ. Sci. Technol., 47, 10813-10823 (2013). https://doi.org/10.1021/es402495h
  13. B. Wu, H. Tian, Y. Hao, S. Liu, X. Liu, W. Liu, X. Bai, W. Liang, S. Lin, Y. Wu, P. Shao, H. Liu, and C. Zhu, Effects of wet flue gas desulfurization and wet electrostatic precipitators on emission characteristics of particulate matter and its ionic compositions from four 300 MW level ultralow coal-fired power plants, Environ. Sci. Technol., 52, 14015-14026 (2018). https://doi.org/10.1021/acs.est.8b03656
  14. E. Stamate, C. Irimiea, and M. Salewski, Investigation of NOx reduction by low temperature oxidation using ozone produced by dielectric barrier discharge, Jpn. J. Appl. Phys., 52, 05EE03 (2013). https://doi.org/10.7567/JJAP.52.05EE03
  15. R. Ji, J. Wang, W. Xu, X. Liu, T. Zhu, C. Yan, and J. Song, Study on the key factors of NO oxidation using O3: The oxidation product composition and oxidation selectivity, Ind. Eng. Chem. Res., 57, 14440-14447 (2018). https://doi.org/10.1021/acs.iecr.8b03597
  16. Z. Han, T. Zou, J. Wang, J. Dong, Y. Deng, and X. Pan, A novel method for simultaneous removal of NO and SO2 from marine exhaust gas via in-site combination of ozone oxidation and wet scrubbing absorption, J. Mater. Sci. Eng., 8, 943 (2020).
  17. Z-H. Xu, X. Xiao, Y. Jia, P. Fang, J-H. Huang, H-W. Wu, Z-J. Tang, and D-Y. Chen, Simultaneous removal of SO2 and NO by O3 oxidation combined with wet absorption, ACS Omega, 5, 5844-5853 (2020). https://doi.org/10.1021/acsomega.9b04031
  18. M. S. Kang, J. Shin, T. U Yu, and J. Hwang, Simultaneous removal of gaseous NOx and SO2 by gas-phase oxidation with ozone and wet scrubbing with sodium hydroxide, Chem. Eng. J., 381, 122601 (2020). https://doi.org/10.1016/j.cej.2019.122601
  19. Z. Han, J. Wang, T. Zou, D. Zhao, C. Gao, J. Dong, and X. Pan, NOx removal from flue gas using an ozone advanced oxidation process with injection of low concentration of ethanol: Performance and mechanism, Energ. Fuels, 34, 2080-2088 (2020). https://doi.org/10.1021/acs.energyfuels.9b03839
  20. P. Fang, C. Cen, Z. Tang, P. Zhong, D. Chen, and Z. Chen, Simultaneous removal of SO2 and NOx by wet scrubbing using urea solution, Chem. Eng. J., 168, 52-59 (2011). https://doi.org/10.1016/j.cej.2010.12.030
  21. T-W. Chien and H. Chu, Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution, J. Hazard. Mater., 80, 43-57 (2000). https://doi.org/10.1016/S0304-3894(00)00274-0
  22. J. Kuropka, Removal of nitrogen oxides from flue gases in a packed column, Environ. Prot. Eng., 37, 13-22 (2011).
  23. https://csr.tsmc.com/csr/en/focus/greenManufacturing/airPollutionControl.html.
  24. H-W. Park, W. B. Cha, and S. Uhm, Highly efficient thermal plasma scrubber technology for the treatment of perfluorocompounds (PFCs), Appl. Chem. Eng., 29, 10-17 (2018). https://doi.org/10.14478/ACE.2017.1127
  25. S. Jodpinmai, S. Boonduang, and P. Limsuwan, Dielectric barrier discharge ozone generator using aluminum granules electrodes, J. Electrostat., 74, 108-114 (2015). https://doi.org/10.1016/j.elstat.2014.12.003