과제정보
본 연구는 산업통상자원부(MOTIE)의 재원으로 한국산업기술평가관리원(KEIT)의 지원을 받아 수행한 연구결과입니다(No. 20009414).
참고문헌
- J. Plautz, Piercing the haze, Science, 361, 1060-1063 (2018). https://doi.org/10.1126/science.361.6407.1060
- Y-B. Zhao, P-P. Gao, W-D. Yang, and H-G. Ni, Vehicle exhaust: An overstated cause of haze in China, Sci. Total Environ., 612, 490-491 (2018). https://doi.org/10.1016/j.scitotenv.2017.08.255
- H-W. Park and S. Uhm, Various technologies for simultaneous removal of NOx and SO2 from flue gas, Appl. Chem. Eng., 28, 607-618 (2017). https://doi.org/10.14478/ACE.2017.1092
- F. Lin, Z. Wang, Z. Zhang, Y. He, Y. Zhu, J. Shao, D. Yuan, G. Chen, and K. Cen, Flue gas treatment with ozone oxidation: An overview on NOx, organic pollutants, and mercury, Chem. Eng. J., 382, 123030 (2020). https://doi.org/10.1016/j.cej.2019.123030
- P. Cordoba, Status of flue gas desulphurisation (FGD) systems from coal-fired power plants: Overview of the physic-chemical control processes of wet limestone FGDs, Fuel, 144, 274-286 (2015). https://doi.org/10.1016/j.fuel.2014.12.065
- S. Yang, X. Pan, Z. Han, D. Zhao, B. Liu, D. Zheng, and Z. Yan, Removal of NOx and SO2 from simulated ship emissions using wet scrubbing based on seawater electrolysis technology, Chem. Eng. J., 331, 8-15 (2018). https://doi.org/10.1016/j.cej.2017.08.083
- K. Skalska, J. S. Miller, and S. Ledakowicz, Trends in NO(x) abatement: A review, Sci. Total Environ., 408, 3976-3989 (2010). https://doi.org/10.1016/j.scitotenv.2010.06.001
- Z. G. Lei, C. P. Wen, and B. H. Chen, Optimization of internals for selective catalytic reduction (SCR) for NO removal, Environ. Sci. Technol., 45, 3437-3444 (2011). https://doi.org/10.1021/es104156j
- D. Q. Dao, L. Gasnot, K. Marschallek, A. El Bakali, and J. F. Pauwels, Experimental study of NO removal by gas re-burning and selective noncatalytic reduction using ammonia in a lab-scale reactor, Energ. Fuel, 24, 1696-1703 (2010). https://doi.org/10.1021/ef901236e
- X. Zhang, B. Gao, A. E. Creamer, C. Cao, and Y. Li, Adsorption of VOCs onto engineered carbon materials: A review, J. Hazard. Mater., 338, 102-123 (2017). https://doi.org/10.1016/j.jhazmat.2017.05.013
- C. Dai, Y. Zhou, H. Peng, S. Huang, P. Qin, J. Zhang, Y. Yang, L. Luo, and X. Zhang, Current progress in remediation of chlorinated volatile organic compounds: A review, J. Ind. Eng. Chem., 62, 106-119 (2018). https://doi.org/10.1016/j.jiec.2017.12.049
- Y. S. Gao, Z. Zhang, J. W. Wu, L. H. Duan, A. Umar, L. Y. Sun, Z. H. Guo, and Q. Wang, A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases, Environ. Sci. Technol., 47, 10813-10823 (2013). https://doi.org/10.1021/es402495h
- B. Wu, H. Tian, Y. Hao, S. Liu, X. Liu, W. Liu, X. Bai, W. Liang, S. Lin, Y. Wu, P. Shao, H. Liu, and C. Zhu, Effects of wet flue gas desulfurization and wet electrostatic precipitators on emission characteristics of particulate matter and its ionic compositions from four 300 MW level ultralow coal-fired power plants, Environ. Sci. Technol., 52, 14015-14026 (2018). https://doi.org/10.1021/acs.est.8b03656
- E. Stamate, C. Irimiea, and M. Salewski, Investigation of NOx reduction by low temperature oxidation using ozone produced by dielectric barrier discharge, Jpn. J. Appl. Phys., 52, 05EE03 (2013). https://doi.org/10.7567/JJAP.52.05EE03
- R. Ji, J. Wang, W. Xu, X. Liu, T. Zhu, C. Yan, and J. Song, Study on the key factors of NO oxidation using O3: The oxidation product composition and oxidation selectivity, Ind. Eng. Chem. Res., 57, 14440-14447 (2018). https://doi.org/10.1021/acs.iecr.8b03597
- Z. Han, T. Zou, J. Wang, J. Dong, Y. Deng, and X. Pan, A novel method for simultaneous removal of NO and SO2 from marine exhaust gas via in-site combination of ozone oxidation and wet scrubbing absorption, J. Mater. Sci. Eng., 8, 943 (2020).
- Z-H. Xu, X. Xiao, Y. Jia, P. Fang, J-H. Huang, H-W. Wu, Z-J. Tang, and D-Y. Chen, Simultaneous removal of SO2 and NO by O3 oxidation combined with wet absorption, ACS Omega, 5, 5844-5853 (2020). https://doi.org/10.1021/acsomega.9b04031
- M. S. Kang, J. Shin, T. U Yu, and J. Hwang, Simultaneous removal of gaseous NOx and SO2 by gas-phase oxidation with ozone and wet scrubbing with sodium hydroxide, Chem. Eng. J., 381, 122601 (2020). https://doi.org/10.1016/j.cej.2019.122601
- Z. Han, J. Wang, T. Zou, D. Zhao, C. Gao, J. Dong, and X. Pan, NOx removal from flue gas using an ozone advanced oxidation process with injection of low concentration of ethanol: Performance and mechanism, Energ. Fuels, 34, 2080-2088 (2020). https://doi.org/10.1021/acs.energyfuels.9b03839
- P. Fang, C. Cen, Z. Tang, P. Zhong, D. Chen, and Z. Chen, Simultaneous removal of SO2 and NOx by wet scrubbing using urea solution, Chem. Eng. J., 168, 52-59 (2011). https://doi.org/10.1016/j.cej.2010.12.030
- T-W. Chien and H. Chu, Removal of SO2 and NO from flue gas by wet scrubbing using an aqueous NaClO2 solution, J. Hazard. Mater., 80, 43-57 (2000). https://doi.org/10.1016/S0304-3894(00)00274-0
- J. Kuropka, Removal of nitrogen oxides from flue gases in a packed column, Environ. Prot. Eng., 37, 13-22 (2011).
- https://csr.tsmc.com/csr/en/focus/greenManufacturing/airPollutionControl.html.
- H-W. Park, W. B. Cha, and S. Uhm, Highly efficient thermal plasma scrubber technology for the treatment of perfluorocompounds (PFCs), Appl. Chem. Eng., 29, 10-17 (2018). https://doi.org/10.14478/ACE.2017.1127
- S. Jodpinmai, S. Boonduang, and P. Limsuwan, Dielectric barrier discharge ozone generator using aluminum granules electrodes, J. Electrostat., 74, 108-114 (2015). https://doi.org/10.1016/j.elstat.2014.12.003