Acknowledgement
The author would like to thank referees for some suggestions.
References
- A. Aksoy and M.A. Khamsi, Nonstandard methods in fixed point theory, Universitext. New York etc.: Springer-Verlag, 1990.
- B. Bollobas, An extension to the theorem of Bishop and Phelps, Bull. London Math. Soc., 2 (1970), 181-182. https://doi.org/10.1112/blms/2.2.181
- M.S. Brodskii and D.P. Mil'man, On the center of a convex set. (Russian) Doklady Akad. Nauk SSSR (N.S.), 59 (1948), 837-840.
- J.A. Clarkson, Unifom convex spaces, Trans. Amer. Math. Soc., 40(3) (1936), 396-414. https://doi.org/10.1090/S0002-9947-1936-1501880-4
- M.M. Day, Normed linear spaces. Third edition. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21. Springer-Verlag, New York-Heidelberg, 1973.
- S. Dhompongsa, A. Kaewkhao and S. Tasena, On a generalized James constant, J. Math. Anal. Appl., 285(2) (2003), 419-435. https://doi.org/10.1016/S0022-247X(03)00408-6
- J. Diestel, The Geometry of Banach Spaces - Selected Topics Lecture Notes in Math., 485, Springer - Verlag, Berlin and New York, 1975.
- J. Diestel, Sequeces and series in a Banach space, Graduate Texts in Mathematics, 92. New York-Heidelberg-Berlin: Springer-Verlag, 1984.
- J. Gao, Normal structure and modulus of U-convexity in Banach spaces. Function spaces, differential operators and nonlinear analysis (Paseky nad Jizerou, 1995), 195-199, Prometheus, Prague, 1996.
- J. Gao, Modulus of 2-dimensional U-Convexity and the Geometry of Banach Spaces, J. Nonlinear and Convex Anal., 20(10) (2019), 2041-2051.
- J. Gao and S. Saejung, A constant related to fixed points and normal structure in Banach spaces, Nonlinear Funct. Anal. Appl., 16(1) (2011), 17-28.
- V.I. Gurariii, Differential properties of convexity moduli of Banach spaces, Mat. Issled., 2(1) (1967), 141-148. (Russian). MR 35*2127. Zbl 232.46024.
- R.C. James, Weakly compact sets, Trans. Amer. Math. Soc., 113 (1964), 129-140. https://doi.org/10.1090/S0002-9947-1964-0165344-2
- M.A. Khamsi, Uniform smoothness implies super-normal structure property. Nonlinear Anal., 19(1) (1992), 1063-1069. https://doi.org/10.1016/0362-546X(92)90124-W
- M.A. Khamsi and B. Sims, Ultra-methods in metric fixed point theory. Kirk, William A. (ed.) et al., Handbook of metric fixed point theory. Dordrecht: Kluwer Academic Publishers. (2001), 177-199.
- W.A. Kirk, A fixed point theorem for mappings which do not increase distances. Amer. Math. Monthly, 72 (1965), 1004-1006. https://doi.org/10.2307/2313345
- W.A. Kirk, The modulus of k-rotundity, Boll. Un. Mat. Ital. A, 7(2) (1988), 195-201.
- T.-C. Lim, On moduli of k-convexity, Abstr. Appl. Anal., 4(4) (1999), 243-247. https://doi.org/10.1155/S1085337599000202
- S. Saejung, On the modulus of U-convexity, Abstr. Appl. Anal., 2005(1) (2005), 59-66. https://doi.org/10.1155/AAA.2005.59
- S. Saejung, Sufficiant conditions for uniform normal structure of Banach spaces and their duals, J. Math. Anal. Appl., 330(1) (2007), 597-604. https://doi.org/10.1016/j.jmaa.2006.07.087
- S. Saejung and J. Gao, The n-Dimensional U-Convexity and Geometry of Banach Spaces, J. Fixed Point Theorey, 16 (2015), 381-392.
- S. Saejung and J. Gao, On the Banas-Hajnose-Wedrychowicz type modulus of convexity and fixed point property, Nonlinear Funct. Anal. Appl., 21(4) (2016), 717-725.
- E. Silverman, Definitions of Lebesgue area for surfaces in metric spaces, Rivista Mat. Univ. Parma, 2 (1951), 47-76.
- B. Sims, "Ultra"-techniques in Banach space theory. Queen's Papers in Pure and Applied Mathematics, 60. Queen's University, Kingston, ON, 1982.