
Nonlinear Functional Analysis and Applications
Vol. 26, No. 2 (2021), pp. 433-442

ISSN: 1229-1595(print), 2466-0973(online)

https://doi.org/10.22771/nfaa.2021.26.02.13
http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright c© 2021 Kyungnam University Press

KUPress

NORMAL STRUCTURE, FIXED POINTS AND MODULUS
OF n-DIMENSIONAL U-CONVEXITY

IN BANACH SPACES X AND X∗

Ji Gao

Department of Mathematics, Community College of Philadelphia
Philadelphia, PA 19130-3991, USA

e-mail: jgao@ccp.edu

Abstract. Let X and X∗ be a Banach space and its dual, respectively, and let B(X)

and S(X) be the unit ball and unit sphere of X, respectively. In this paper, we study

the relation between Modulus of n-dimensional U-convexity in X∗ and normal structure in

X. Some new results about fixed points of nonexpansive mapping are obtained, and some

existing results are improved. Among other results, we proved: if X is a Banach space with

Un
X∗(n + 1) > 1− 1

n+1
where n ∈ N, then X has weak normal structure.

1. Introduction

Let X be a normed linear space. Let B(X) = {x ∈ X : ‖x‖ ≤ 1} and
S(X) = {x ∈ X : ‖x‖ = 1} be the unit ball and the unit sphere of X,
respectively. Let X∗ be the dual space of X, and ∇x ∈ S(X∗) denotes the set
of norm one supporting functionals of x ∈ S(X).

Brodskĭı and Mil’man [3] introduced the following geometric concepts in
1948:

Definition 1.1. A bounded and convex subset K of a Banach space X is said
to have normal structure if every convex subset H of K that contains more
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than one point contains a point x0 ∈ H, such that

sup{‖x0 − y‖ : y ∈ H} < d(H),

where d(H) = sup{‖x− y‖ : x, y ∈ H} denotes the diameter of H.

A Banach space X is said to have normal structure if every bounded and
convex subset of X has normal structure. A Banach space X is said to have
weak normal structure if every weakly compact convex set K in X has normal
structure. A Banach space X is said to have uniform normal structure if there
exists 0 < c < 1 such that for any bounded closed convex subset K of X that
contains more than one point, there exists x0 ∈ K such that

sup{‖x0 − y‖ : y ∈ K} ≤ c · d(K).

For a reflexive Banach space, the normal structure and weak normal struc-
ture coincide.

Let C be a non-empty subset of a Banach space X. A mapping T : C → C
is said to be nonexpansive whenever ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.
A Banach space has the fixed point property if for every nonempty bounded
closed and convex subset C of X and for each nonexpansive mapping T : C →
C, there is a point x ∈ C such that x = Tx ([11], [16], [22]).

Kirk [16] proved that if a Banach space X has weak normal structure then it
has the weak fixed point property, that is, every nonexpansive mapping from
a weakly compact and convex subset of X into itself has a fixed point.

In [4], Clarkson introduced the concept of modulus of convexity:

δX(ε) = inf{1− 1

2
‖x+ y‖ : x, y ∈ S(X), ‖x− y‖ ≥ ε},

where 0 ≤ ε ≤ 2. In [9], Gao introduced the concept of modulus of U -convexity
which is a generalization of δX(ε):

UX(ε) = inf{1− 1

2
‖x+ y‖ : x, y ∈ S(X), 〈x− y, fx〉 ≥ ε for some fx ∈ ∇x},

where 0 ≤ ε ≤ 2.
It is clear that δX(ε) ≤ UX(ε), 0 < ε < 2. In general, δX(ε) 6= δX∗(ε) and

UX(ε) 6= UX∗(ε), for 0 < ε < 2. Both δX(ε) and UX(ε) are continuous and
increasing function in [0, 2) ([6], [12], [18]).

Saejung [20] proved that:

Theorem 1.2. let X be a Banach space with UX(1+t) > t
2 , for any 0 ≤ t < 1.

Then both X and its dual X∗ have uniform normal structures.
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Definition 1.3. ([5], [7]) Let X and Y be Banach spaces. We say that Y is
finitely representable in X if for any ε > 0 and any finite dimensional subspace
N ⊆ Y there is an isomorphism T : N → T (N) such that for any y ∈ N ,

(1− ε)‖y‖ ≤ ‖Ty‖ ≤ (1 + ε)‖y‖.

The Banach space X is called super-reflexive if any space Y which is finitely
representable in X is reflexive.

Definition 1.4. ([13]) A Banach space X is called uniformly non-square if

there exists δ > 0 such that if x, y ∈ S(X), then either ‖x+y‖
2 ≤ 1 − δ or

‖x−y‖
2 ≤ 1− δ.

Seajung [19] also proved that:

Theorem 1.5. A Banach space X is unifomly nonsquere if and only if there
exists ε > 0, such that UX(2− ε) > 0.

Remark 1.6. It is well known that:

(a) if X is uniformly non-square then X is supper-reflexive and therefore
X is reflexive.

(b) X is super-reflexive if and only if X∗ is supper-reflexive.

The following result refer to a Banach space with weak* sequentially com-
pact unit ball of the dual. Notice that this property is satisfied by reflexive or
separable Banach spaces, and by those that admit an equivalent smooth norm
(see [8], Ch. XIII).

Lemma 1.7. ([21]) If X is a Banach space with B(X∗) which is weak* se-
quentially compact and fails to have weak normal structure, then for any ε > 0
there are a sequence {xn} ⊆ S(X) and a sequence {fn} ⊆ S(X∗) such that

(a) |‖xi − xj‖ − 1| < ε, whenever i 6= j;
(b) 〈xi, fi〉 = 1, whenever 1 ≤ i ≤ ∞;
(c) |〈xj , fi〉| < ε, whenever i 6= j; and
(d) ‖fi − fj‖ > 2− ε, whenever i 6= j.

2. Main results

For two sets of vectors {x1, x2, . . . , xn+1} ⊆ X and {f1, f2, . . . , fn} ⊆ X∗

where n ∈ N, the following matrix
1 1 · · · 1

〈x1, f1〉 〈x2, f1〉 · · · 〈xn+1, f1〉
...

...
. . .

...
〈x1, fn〉 〈x2, fn〉 · · · 〈xn+1, fn〉
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is denoted by M(x1, x2, . . . , xn+1; f1, f2, . . . , fn).

In 1951, Silverman [23] introduced the concept of volume of the convex hull
of x1, x2, . . . , xn+1 in X by

V (x1, x2, . . . , xn+1) := sup{detM(x1, x2, . . . , xn+1; f1, f2, . . . , fn) :

f1, f2, . . . , fn ∈ S(X∗)}.

In 1988, Kirk introduced the modulus of n-dimensional uniform convexity
as follows [17]:

Definition 2.1. Let X be a Banach space. Then

δnX(ε) := inf

{
1− 1

n+ 1
‖x1 + x2 + · · ·+ xn+1‖ :

x1, x2, . . . xn+1 ∈ S(X),
V (x1, x2, . . . , xn+1) ≥ ε

}
,

where 0 ≤ ε ≤ 2 is called the modulus of n-dimensional uniform convexity of
X.

For two sets of vectors {x1, x2, . . . , xn+1} ⊆ X and
{f2 ∈ ∇x2 , f3 ∈ ∇x3 , . . . , fn+1 ∈ ∇xn+1} ⊆ X∗, where n ∈ N, the following
matrix 

1 1 · · · 1
〈x1, f2〉 〈x2, f2〉 · · · 〈xn+1, f2〉

...
...

. . .
...

〈x1, fn+1〉 〈x2, fn+1〉 · · · 〈xn+1, fn+1〉


is denoted by m(x1, x2, . . . , xn+1; f2, f3, . . . , fn+1).

In 2015, Saejung and Gao [21] introduced another concept of volume by the
convex hull of x1, x2, . . . , xn+1 in X by

v(x1, x2, . . . , xn+1) := sup{detm(x1, x2, . . . , xn+1; f2, f3, . . . , fn+1) :

f2 ∈ ∇x2 , f3 ∈ ∇x3 , . . . , fn+1 ∈ ∇xn+1}.

It is clear from the definition that:

Proposition 2.2. v(x1, x2, . . . , xn+1) ≤ V (x1, x2, . . . , xn+1).

Definition 2.3. ([21]) Let νnX = sup{v(x1, x2, . . . , xn+1) : x1, x2, . . . xn+1 ∈
S(X)} be the upper bound of all n-dimmensional volume in X.

Proposition 2.4. ([21]) For a Banach space X with dim(X) > n, νnX ≥ 2.
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Definition 2.5. ([21]) Let X be a Banach space. Then

Un
X(ε) := inf

{
1− 1

n+ 1
‖x1 + x2 + · · ·+ xn+1‖ :

x1, x2, . . . xn+1 ∈ S(X),
v(x1, x2, . . . , xn+1) ≥ ε

}
,

where 0 ≤ ε ≤ νnX is called the modulus of n-dimensional U -convexity of X.

It is clear that for a Banach space X with dim(X) > n, if 0 ≤ ε ≤ 2, then
δnX(ε) ≤ Un

X(ε).

Lemma 2.6. ([21]) Un
X(ε) is a continuous function in [0, νnX).

Theorem 2.7. ([21]) If X is a Banach space with Un
X(1) > 0 where n ∈ N,

then X is super-reflexive.

Theorem 2.8. ([10]) If X is a Banach space with U2
X(54) > 2

3 , then X is
super-reflexive.

Lemma 2.9. ([2]) Let X be a Banach space, and let 0 < ε < 1. Given

z ∈ B(X) and h ∈ S(X∗) with 1− 〈z, h〉 < ε2

4 , then there exist y ∈ S(X) and
g ∈ ∇y such that ‖y − z‖ < ε and ‖g − h‖ < ε.

Remark 2.10. It is easy to know that the condition of Theorem 2.9 can be

extended to 1− 〈z, h〉 ≤ ε2

4 for given z ∈ B(X) and h ∈ S(X∗).

The following result was proved by James:

Theorem 2.11. ([13]) Let X be a Banach space. Then X is not reflexive
if and only if for any 0 < η < 1 there are two sequences {xn} ⊆ S(X) and
sequence {fn} ⊆ S(X∗) such that

(a) 〈xm, fn〉 = η whenever n ≤ m; and
(b) 〈xm, fn〉 = 0 whenever n > m.

Theorem 2.12. If X is a Banach space with max{Un
X(1), Un

X∗(1)} > 0 where
n ∈ N, then X is supre-reflexive.

Proof. This is a direct result of Theorem 2.7 and Remark 1.6. �

Theorem 2.13. If X is a Banach space with max{Un
X(54), Un

X∗(
5
4)} > 2

3 , then
X is super-reflexive.

Proof. This is a direct result of Theorem 2.8 and Remark 1.6. �

Theorem 2.14. If X is a Banach space with Un
X∗(n + 1) > 1 − 1

n+1 = n
n+1

where n ∈ N, then X has weak normal structure.
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Proof. It is easy to prove by the mathematical induction that:

det



1 1 1 · · · 1 1
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · −1 1


(n+1)×(n+1)

= n+ 1.

Suppose X does not have weak normal structure, for 0 < ε < 1, let {xi}
and {fi} be the sequances satisty four conditions in Lemma 1.7.

Consider

{gj} = {−fj+1} ⊆ S(X∗), j = 1, 2, ..., n+ 1

and

{yi} = {xi − xi+1} ⊆ (1 + ε)U(X) ⊆ (1 + ε)U((X∗)∗), i = 1, 2, . . . , n+ 1.

Then, we have:

1− ε < 〈gj , yi〉 = 〈−fj+1, xi − xi+1〉 = 1 + εi,i < 1 + ε, if i = j,

−1− ε < 〈gj , yi〉 = 〈−fj+1, xi − xi+1〉 = −1 + εj.i < −1 + ε, if i = j + 1;
and

−ε < 〈gj , yi〉 = 〈−fj+1, xi − xi+1〉 = εj,i < ε, if i 6= j, and i 6= j + 1,

where 1 ≤ i, j ≤ n+ 1.

We therefore have:

det



1 1 1 · · · 1 1
〈g1, y2〉 〈g2, y2, 〉 〈g3, y2, 〉 · · · 〈gn, y2〉 〈gn+1, y2〉
〈g1, y3〉 〈g2, y3, 〉 〈g3, y3, 〉 · · · 〈gn, y3〉 〈gn+1, y3〉

...
...

. . .
...

...
〈g1, yn〉 〈g2, yn〉 〈g3, yn〉 · · · 〈gn, yn〉 〈gn+1, yn〉
〈g1, yn+1〉 〈g2, yn+1〉 〈g3, yn+1〉 · · · 〈gn, yn+1〉 〈gn+1, yn+1〉



= det



1 1 1 · · · 1 1
−1 + ε1,2 1 + ε2,2 ε3,2 · · · εn,2 εn+1,2

ε1,3 −1 + ε2,3 1 + ε3,3 · · · εn,3 εn+1,3
...

...
...

. . .
...

...
ε1,n ε2,n ε3,n · · · 1 + εn,n εn+1,n

ε1,n+1 ε2,n+1 ε3,n+1 · · · −1 + εn,n+1 1 + εn+1,n+1
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= det



1 1 1 · · · 1 1
−1 1 0 · · · 0 0
0 −1 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · −1 1


(n+1)×(n+1)

+ dε

= n+ 1 + dε,
where d is a constant.

From Lemma 2.9 (since ε can be arbitrarily small, if necessary we can
normalize yi to use Lemma 2.9), for 0 < ε < 1, there are {hj} ⊆ S(X∗), j =
1, 2, . . . , n+1 and {zi} ⊆ S((X∗)∗), i = 1, 2, . . . , n+1 such that zn ∈ ∇hn , ‖hj−
gj‖ < ε, for j=1, 2, ... n+1, and ‖zi − yi‖ < ε for i = 1, 2, . . . , n + 1. Hence,
we have

−2ε ≤ 〈hj , zi〉 − 〈gj , yi〉 ≤ 2ε

for i = 1, 2, . . . , n+ 1, and j = 1, 2, . . . , n+ 1. Therefore,

det



1 1 1 · · · 1 1
〈h1, z2〉 〈h2, z2, 〉 〈h3, z2, 〉 · · · 〈hn, z2〉 〈hn+1, y2〉
〈h1, z3〉 〈h2, z3, 〉 〈h3, z3, 〉 · · · 〈hn, z3〉 〈hn+1, y3〉

...
...

. . .
...

...
〈h1, zn〉 〈h2, zn〉 〈h3, zn〉 · · · 〈hn, zn〉 〈hn+1, zn〉
〈h1, zn+1〉 〈h2, zn+1〉 〈h3, zn+1〉 · · · 〈hn, zn+1〉 〈hn+1, zn+1〉



= det



1 1 1 · · · 1 1
〈g1, y2〉 〈g2, y2, 〉 〈g3, y2, 〉 · · · 〈gn, y2〉 〈gn+1, y2〉
〈g1, y3〉 〈g2, y3, 〉 〈g3, y3, 〉 · · · 〈gn, y3〉 〈gn+1, y3〉

...
...

. . .
...

...
〈g1, yn〉 〈g2, yn〉 〈g3, yn〉 · · · 〈gn, yn〉 〈gn+1, yn〉
〈g1, yn+1〉 〈g2, yn+1〉 〈g3, yn+1〉 · · · 〈gn, yn+1〉 〈gn+1, yn+1〉


+ eε

= n+ 1 + fε,

where e and f are constant. So, we have

v(h1, h2, . . . , hn+1) : = sup{detm(h1, h2, . . . , hn+1; z2, z3, . . . , zn+1) :

z2 ∈ ∇h2 , z3 ∈ ∇h3 , . . . , zn+1 ∈ ∇hn+1}
≥ n+ 1 + fε.
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On the other hand, since

‖h1 + h2 + · · ·+ hn+1‖
n+ 1

≥ 〈h1 + h2 + · · ·+ hn+1

n+ 1
, z1〉 − ε

≥ 1

n+ 1
,

we have

1− ‖h1 + h2 + · · ·+ hn+1‖
n+ 1

< 1− 1

n+ 1
=

n

n+ 1
.

From the definition of Un
X(ε), we have Un

X∗(n+ 1) < 1− 1
n+1 . �

3. Uniform normal structure

Let {Xi}i∈I be a family of Banach spaces on an index set I, and let l∞(I,Xi)
denote the subspace of the product space equipped with the norm ‖(xi)‖ =
supi∈I ‖xi‖ <∞.

Definition 3.1. ([1], [15], [24]) Let U be an ultrafilter on I and let

NU = {(xi) ∈ l∞(I,Xi) : lim
U
‖xi‖ = 0}.

The ultra-product of {Xi}i∈I is the quotient space l∞(I,Xi)/NU equipped
with the quotient norm.

We will use (xi)U to denote an element of the ultra-product. It follows from
the property of ultra-product [10], and the definition of quotient norm that

‖(xi)U‖ = lim
U
‖xi‖. (3.1)

In the following we will restrict our index set I to be N, the set of natural
numbers, and let Xi = X for all i ∈ N for some Banach space X. For an
ultrafilter U on N, we use XU to denote the corresponding ultra-product,
called an ultra-power of X.

Lemma 3.2. ([1], [15], [24]) Suppose that U is an ultrafilter on N and X is a
Banach space. Then (X∗)U ∼= (XU )∗ if and only if X is super-reflexive; and
in this case, the mapping J defined by

〈(xi)U , J((fi)U )〉 = lim
U
〈xi, fi〉, for all (xi)U ∈ XU

is the canonical isometric isomorphism from (X∗)U onto (XU )∗.

Therefore, we have:
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Theorem 3.3. Let X be a super-reflexive Banach space. Then for any non-
trivial ultrafilter U on N, and for all n ∈ N and ε > 0, we have

Un
XU (ε) = Un

X(ε).

Lemma 3.4. ([14]) If X is a super-reflexive Banach space, then X has uni-
form normal structure if and only if XU has normal structure.

From Theorem 2.12, Theorem 2.14, and Lemma 3.4, we have:

Theorem 3.5. If X is a Banach space with max{Un
X(1), Un

X∗(1)} > 0 and

Un
X∗(n+ 1) > 1− 1

n+1 , where n ∈ N, then X has uniform normal structure.

Since 5
4 < 2, when n = 2, from Theorem 2.13, Theorem 2.14, and Theorem

3.4, we have:

Theorem 3.6. If X is a Banach space with max{U2
X(54), U2

X∗(
5
4)} > 1− 1

3 = 2
3 ,

then X has uniform normal structure.

Theorem 3.6 improves Theorem 3.5 of [10].

Corollary 3.7. If X is a Banach space with max{δnX(1), δnX∗(1)} > 0 and

δnX∗(n+ 1) > 1− 1
n+1 where n ∈ N, then X has uniform normal structure.

When n = 2, we have:

Corollary 3.8. If X is a Banach space with max{δ2X(54), δ2X∗(
5
4)} > 1− 1

3 = 2
3 ,

then X has uniform normal structure.

Acknowledgments: The author would like to thank referees for some sug-
gestions.
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