과제정보
This work was supported by the New and Renewable Energy Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 2017-3010092430).
참고문헌
- A. Abdullah, A. Ahmed, P. Akhter, A. Razzaq, M. Zafar, M. Hussain, N. Shahzad, K. Majeed, S. Khurrum, M. S. A. Bakar, and Y.-K. Park, Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan, Korean J. Chem. Eng., 37, 1899-1906 (2020). https://doi.org/10.1007/s11814-020-0624-0
- G. Ozsin, M. Kilic, E. Apaydin-Varol, A. E. Putun, and E. Putun, A thermo-kinetic study on co-pyrolysis of oil shale and polyethylene terephthalate using TGA/FT-IR, Korean J. Chem. Eng., 37, 1888-1898 (2020). https://doi.org/10.1007/s11814-020-0614-2
- Y. Liu, Y. Wu, M. Su, W. Liu, X. Li, and F. Liu, Developing Bronsted-Lewis acids bifunctionalized ionic liquids based heteropolyacid hybrid as high-efficient solid acids in esterification and biomass conversion, J. Ind. Eng. Chem., 92, 200-209 (2020). https://doi.org/10.1016/j.jiec.2020.09.005
- S.-K. Choi, Y.-S. Choi, Y.-W. Jeong, S.-Y. Han, and Q. V. Nguyen, Combustion characteristics of fuel blends of coffee waste-derived oil and polystyrene foam waste-derived oil in a pilot-scale burner, J. Korea Soc. Waste Manag., 37, 574-582 (2020). https://doi.org/10.9786/kswm.2020.37.8.574
- L. Zhu and Z. Zhong, Effects of cellulose, hemicellulose and lignin on biomass pyrolysis kinetics, Korean J. Chem. Eng., 37, 1660-1668 (2020). https://doi.org/10.1007/s11814-020-0553-y
- Q. K. Tran, S. Han, H. V. Ly, S.-S. Kim, and J. Kim, Hydrodeoxygenation of a bio-oil model compound derived from woody biomass using spray-pyrolysis-derived spherical γ-Al2O3-SiO2 catalysts, J. Ind. Eng. Chem., 92, 243-251 (2020). https://doi.org/10.1016/j.jiec.2020.09.012
- L. Santamaria, G. Lopez, A. Arregi, M. Artetxe, M. Amutio, J. Bilbao, and M. Olazar, Catalytic steam reforming of biomass fast pyrolysis volatiles over Ni-Co bimetallic catalysts, J. Ind. Eng. Chem., 91, 167-181 (2020). https://doi.org/10.1016/j.jiec.2020.07.050
- R. S. Tshikesho, A. Kumar, R. L. Huhnke, and A. Apblett, Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil, Bioresour. Technol., 285, 121299 (2019). https://doi.org/10.1016/j.biortech.2019.03.138
- B.-J. Lin, W.-H. Chen, W. M. Budzianowski, C.-T. Hsieh, and P.-H. Lin, Emulsification analysis of bio-oil and diesel under various combinations of emulsifiers, Appl. Energy, 178, 746-757 (2016). https://doi.org/10.1016/j.apenergy.2016.06.104
- C. Song, M. Y. Gim, Y. H. Lim, and D. H. Kim, Enhanced yield of benzene, toulene, and xylene from the co-aromatization of methane and propane over gallium supported on mesoporous ZSM-5 and ZSM-11, Fuel, 251, 404-412 (2019). https://doi.org/10.1016/j.fuel.2019.04.079
- Y.-T. Cheng, J. Jae, J. Shi, W. Fan, and G. W. Huber, Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts, Angew. Chem. Int., 51, 1387-1390 (2012). https://doi.org/10.1002/anie.201107390
- G. J. Woo and Y.-M. Kim, Effect of torrefaction on the catalytic pyrolysis of miscanthus over HZSM-5 and HY, J. Korea Soc. Waste Manag., 37, 542-548 (2020). https://doi.org/10.9786/kswm.2020.37.8.542
- S. Moogi, J. Jae, H. P. R. Kannapu, A. Ahmed, E. D. Park, and Y.-K. Park, Enhancement of aromatics from catalytic pyrolysis of yellow poplar: Role of hydrogen and methane decomposition, Bioresour. Technol., 315, 123835 (2020). https://doi.org/10.1016/j.biortech.2020.123835
- Y.-H. Lee, C.-H. Jeong, H.-D. Jin, G. Y. Jeong, H.-J. Byeon, H.-M. Kim and D.-W. Jeong, A study on the optimization of fast pyrolysis system and deoxygenation for bio-oil production of unused agricultural by-products, J. Korea Soc. Waste Manag., 37, 531-541 (2020). https://doi.org/10.9786/kswm.2020.37.8.531
- M. Ikura, M. Stanciulescu, and E. Hogan, Emulsification of pyrolysis derived bio-oil in diesel fuel, Biomass Bioenergy, 24, 221-232 (2003). https://doi.org/10.1016/S0961-9534(02)00131-9
- K. Liu, W. Zhao, T. Guo, Q. Lei, Y. Guan, D. Wang, M. Cui, S. Fu, J. Zhao, Z. Zong, and X. Wei, Emulsification and performance measurement of bio-oil with diesel, Waste Biomass Valori., 12, 2933-2944 (2019).
- X. Jiang and N. Ellis, Upgrading bio-oil through emulsification with biodiesel: Mixture production, Energy Fuels, 24, 1358-1364 (2010). https://doi.org/10.1021/ef9010669
- A. Farooq, H. W. Lee, J. Jae, E. E. Kwon, and Y.-K. Park, Emulsification characteristics of ether extracted pyrolysis-oil in diesel using various combinations of emulsifiers (span 80, atlox 4916 and zephrym pd3315) in double reactor system, Environ. Res., 184, 109267 (2020). https://doi.org/10.1016/j.envres.2020.109267
- Q. Yin, S. Wang, X. Li, Z. Guo, and Y. Gu, Review of bio-oil upgrading technologies and experimental study on emulsification of bio-oil and diesel, 2010 Int. Conf. Opt. Image Proce., pp 343-347 (2010).
- Y. Li, T. Wang, W. Liang, C. Wu, L. Ma, Q. Zhang, X. Zhang, and T. Jiang, Ultrasonic preparation of emulsions derived from aqueous bio-oil fraction and 0# diesel and combustion characteristics in diesel generator, Energy Fuels, 24, 1987-1995 (2010). https://doi.org/10.1021/ef9010934
- Z. G. Guo, S. R. Wang, and X. Y. Wang, Emulsification of bio-oil heavy fraction with diesel by mechanical and ultrasonic technologies, Appl. Mech. Mater., 316-317, 1133-1137 (2013). https://doi.org/10.4028/www.scientific.net/AMM.316-317.1133