DOI QR코드

DOI QR Code

Critical buckling moment of functionally graded tapered mono-symmetric I-beam

  • Rezaiee-Pajand, Mohammad (Department of Civil Engineering, Ferdowsi University of Mashhad) ;
  • Masoodi, Amir R. (Department of Civil Engineering, Ferdowsi University of Mashhad) ;
  • Alepaighambar, Ali (Department of Civil Engineering, Ferdowsi University of Mashhad)
  • Received : 2020.03.02
  • Accepted : 2021.05.12
  • Published : 2021.06.10

Abstract

This study deals with the Lateral-Torsional Buckling (LTB) of a mono-symmetric tapered I-beam, in which the cross-section is varying longitudinally. To obtain the buckling moment, two concentrated bending moments should be applied at the two ends of the structure. This structure is made of Functionally Graded Material (FGM). The Young's and shear modules change linearly along the longitudinal direction of the beam. It is considered that this tapered beam is laterally restrained continuously, by using torsional springs. Furthermore, two rotational bending springs are employed at the two structural ends. To achieve the buckling moment, Ritz solution method is utilized. The response of critical buckling moment of the beam is obtained by minimizing the total potential energy relation. The lateral and torsional displacement fields of the beam are interpolated by harmonic functions. These functions satisfy the boundary conditions. Two different support conditions are considered in this study. The obtained formulation is validated by solving benchmark problems. Moreover, some numerical studies are implemented to show the accuracy, efficiency and high performance of the proposed formulation.

Keywords

Acknowledgement

This research did not receive any specific grant.

References

  1. Akbas, S.D. (2015), "Post-buckling analysis of axially functionally graded three-dimensional beams", Int. J. Appl. Mech., 7(3), 1550047. https://doi.org/10.1142/S1758825115500477.
  2. Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm.Stresses, 36(12), 1233-1254. ttps://doi.org/10.1080/01495739.2013.788397.
  3. Alwis, W. and Usam, T. (1979), "Elastic lateral torsional buckling of unbraced and braced planar frames", Comput. Struct., 10(3), 517-529. https://doi.org/10.1016/0045-7949(79)90027-0.
  4. Andrade, A. and Camotim, D. (2004), "Lateral-torsional buckling of prismatic and tapered thin-walled open beams: assessing the influence of pre-buckling deflections", Steel Compos.Struct., 4(4), 281-301. https://doi.org/10.12989/scs.2004.4.4.281.
  5. Andrade, A, Camotim, D and Dinis, PB (2007), "Lateral-torsional buckling of singly symmetric web-tapered thin-walled I-beams: 1D model vs. shell FEA", Comput. Struct., 85(17-18), 1343-1359. https://doi.org/10.1016/j.compstruc.2006.08.079.
  6. Andrade, A., Providencia, P. and Camotim, D. (2010), "Elastic lateral-torsional buckling of restrained web-tapered I-beams", Comput. Struct., 88(21-22), 1179-1196. https://doi.org/10.1016/j.compstruc.2010.06.005.
  7. Asgarian, B., Soltani, M. and Mohri, F. (2013), "Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections", Thin-Wall. Struct., 62, 96-108. https://doi.org/10.1016/j.tws.2012.06.007.
  8. Atai, A., Nikranjbar, A. and Kasiri, R. (2012), "Buckling and post-buckling behaviour of semicircular functionally graded material arches: a theoretical study", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 226(3), 607-614. https://doi.org/10.1177/0954406211416179.
  9. Bandula Heva, Y. and Mahendran, M. (2012), "Flexural-torsional buckling tests of cold-formed steel compression members at elevated temperatures", Steel Compos. Struct., 14(3), 205-227. https://doi.org/10.12989/scs.2012.14.3.205.
  10. Bas, S. (2019), "Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection", Steel Compos. Struct., 30(5), 483-492. https://doi.org/10.12989/scs.2019.30.5.483.
  11. Benyamina, A.B., Meftah, S.A. and Mohri, F. (2013), "Analytical solutions attempt for lateral torsional buckling of doubly symmetric web-tapered I-beams", Eng. Struct., 56, 1207-1219. https://doi.org/10.1016/j.engstruct.2013.06.036.
  12. Boissonnade, N. and Muzeau, J. (2001), "A new beam finite element for tapered members", Proceedings of the eighth international conference on The application of artificial intelligence to civil and structural engineering computing, 73-74.
  13. Brown, T.G. (1981), "Lateral-torsional buckling of tapered I-beams", J. Struct. Division, 107(4), 689-697. https://doi.org/10.1061/JSDEAG.0005681
  14. Challamel, N., Andrade, A. and Camotim, D. (2007), "An analytical study on the lateral-torsional buckling of linearly tapered cantilever strip beams", Int. J. Struct. Stab. Dynam., 7(3), 441-456. https://doi.org/10.1142/S0219455410003865.
  15. Chen, W. and Ye, J. (2010), "Elastic lateral and restrained distorsional buckling of doubly symmetric I-beams", Int. J. Struct. Stab. Dynam., 10(5), 983-1016. https://doi.org/10.1142/S0219455410003865.
  16. de Oliveira, J.P.S., et al. (2016), "Elastic critical moment of continuous composite beams with a sinusoidal-web steel profile for lateral-torsional buckling", Eng. Struct., 113, 121-132. https://doi.org/10.1016/j.engstruct.2016.01.021
  17. Dias, J.V.F., et al. (2019), "Elastic critical moment of lateral-distortional buckling of steel-concrete composite beams under uniform hogging moment", Int. J. Struct. Stab. Dynam., 19(7): 1950079. https://doi.org/10.1142/S0219455419500792.
  18. Dibley, J. (1969), "Lateral-torsional buckling of I-sections in grade 55 steel", Proceedings of the Institution of Civil Engineers, 43(4), 599-627. https://doi.org/10.1680/iicep.1969.7315.
  19. Guo, Y., et al. (2002), "Elastic torsional-flexural buckling of tapered I beam-columns", Advances in Steel Structures (ICASS'02),155-162. https://doi.org/10.1016/B978-008044017-0/50017-2.
  20. Holubowski, R. and Jarczewska, K. (2016), "Lateral-torsional buckling of nonuniformly loaded beam using differential transformation method", Int. J. Struct. Stab. Dynam., 16(7): 1550034. https://doi.org/10.1142/S0219455415500340.
  21. Hu, Y., Mohareb, M. and Doudak, G. (2018), "Effect of eccentric lateral bracing stiffness on lateral torsional buckling resistance of wooden beams", Int. J. Struct. Stab. Dynam., 18(2), 1850027. https://doi.org/10.1142/S021945541850027X.
  22. Jiao, P., et al. (2017), "Lateral-torsional buckling analysis of wood composite I-beams with sinusoidal corrugated web", Thin-Wall. Struct., 119, 72-82. https://doi.org/10.1016/j.tws.2017.05.025.
  23. Kim, B., Li, L.Y. and Edmonds, A. (2016), "Analytical solutions of lateral-torsional buckling of castellated beams", Int. J. Struct. Stab. Dynam., 16(8), 1550044. https://doi.org/10.1142/S0219455415500443.
  24. Kim, N.I. and Lee, J. (2016), "Theory of thin-walled functionally graded sandwich beams with single and double-cell sections", Compos. Struct., 157, 141-154. https://doi.org/10.1016/j.compstruct.2016.07.024.
  25. Kim, N.I. and Shin, D.K. (2009), "Dynamic stiffness matrix for flexural-torsional, lateral buckling and free vibration analysis of mono-symmetric thin-walled composite beams", Int. J. Struct. Stab. Dynam., 9(3), 411-436. https://doi.org/10.1142/S0219455409003107.
  26. Kitipornchai, S. and Trahair, N.S. (1980), "Buckling properties of monosymmetric I-beams", J. Struct. Division, 106(ASCE 15406 Proceeding).
  27. Kubo, M. and Fukumoto, Y. (1988), "Lateral-torsional buckling of thin-walled I-beams", J. Struct. Eng., 114(4), 841-855. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:4(841)
  28. Kus, J. (2015), "Lateral-torsional buckling of steel beams with simultaneously tapered flanges and web", Steel Compos. Struct., 19(4), 897-916. http://dx.doi.org/10.12989/scs.2015.19.4.897.
  29. Larue, B., Khelil, A. and Gueury, M. (2007), "Elastic flexural-torsional buckling of steel beams with rigid and continuous lateral restraints", J. Constr. Steel Res., 63(5), 692-708. https://doi.org/10.1016/j.jcsr.2006.07.004.
  30. Lee, J. and Kim, S.E. (2001), "Flexural-torsional buckling of thin-walled I-section composites", Comput. Struct., 79(10), 987-995. https://doi.org/10.1016/S0045-7949(00)00195-4.
  31. Lee, J. and Kim, S.E. (2002), "Lateral buckling analysis of thin-walled laminated channel-section beams", Compos. Struct., 56(4), 391-399. https://doi.org/10.1016/S0263-8223(02)00022-3.
  32. Machado, S.P. (2008), "Non-linear buckling and post-buckling behavior of thin-walled beams considering shear deformation", Int. J. Nonlinear Mech., 43(5), 345-365. https://doi.org/10.1016/j.ijnonlinmec.2007.12.019.
  33. Masoodi, A.R. (2019), "Analytical solution for optimum location of belt truss based on stability analysis", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 172(5), 382-388. https://doi.org/10.1680/jstbu.17.00187.
  34. Masoodi, A.R. and Moghaddam, S.H. (2015), "Nonlinear dynamic analysis and natural frequencies of gabled frame having flexible restraints and connections", KSCE J. Civil Eng., 19(6), 1819-1824. https://doi.org/10.1007/s12205-015-0285-4.
  35. Miranda, C. and Ojalvo, M. (1965), "Inelastic lateral-torsional buckling of beam-columns", J. Eng. Mech. Division, 91(6), 21-38. https://doi.org/10.1061/JMCEA3.0000693
  36. Mohammadi, E., Hosseini, S.S. and Rohanimanesh, M.S. (2016), "Elastic lateral-torsional buckling strength and torsional bracing stiffness requirement for monosymmetric I-beams", Thin-Wall. Struct., 104, 116-125. https://doi.org/10.1016/j.tws.2016.03.003.
  37. Mohri, F., Damil, N. and Potier-Ferry, M. (2010), "Linear and nonlinear stability analyses of thin-walled beams with monosymmetric I sections", Thin-Wall. Struct., 48(4-5), 299-315. https://doi.org/10.1016/j.tws.2009.12.002
  38. Nguyen, T.T., Thang, P.T. and Lee, J. (2017), "Lateral buckling analysis of thin-walled functionally graded open-section beams", Compos. Struct., 160, 952-963. https://doi.org/10.1016/j.compstruct.2016.10.017.
  39. Osmani, A. and Meftah, S.A. (2018), "Lateral buckling of tapered thin walled bi-symmetric beams under combined axial and bending loads with shear deformations allowed", Eng. Struct., 165, 76-87. https://doi.org/10.1016/j.engstruct.2018.03.009.
  40. Ozbasaran, H., Aydin, R. and Dogan, M. (2015), "An alternative design procedure for lateral-torsional buckling of cantilever I-beams", Thin-Wall. Struct., 90, 235-242. https://doi.org/10.1016/j.tws.2015.01.021.
  41. Pandey, M.D., Kabir, M.Z. and Sherbourne, A.N. (1995), "Flexural-torsional stability of thin-walled composite I-section beams", Compos. Eng., 5(3), 321-342. https://doi.org/10.1016/0961-9526(94)00101-E.
  42. Powell, G. and Klingner, R. (1970), "Elastic lateral buckling of steel beams, J. Struct.Division.
  43. Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2019a), "Nonlinear analysis of FG-sandwich plates and shells", Aerosp. Sci. Technol., 87, 178-189. https://doi.org/10.1016/j.ast.2019.02.017.
  44. Rezaiee-Pajand, M. and Masoodi, A.R. (2018), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932.
  45. Rezaiee-Pajand, M. and Masoodi, A.R. (2019), "Stability analysis of frame having FG tapered beam-column", Int. J. Steel Struct., 19(2), 446-468. https://doi.org/10.1007/s13296-018-0133-8.
  46. Rezaiee-Pajand, M. and Masoodi, A.R. (2020), "Hygro-thermoelastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2020.1780524.
  47. Rezaiee-Pajand, M., Masoodi, A.R. and Alepaighambar, A. (2018a), "Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing", Steel Compos. Struct., 28(4), 403-414. https://doi.org/10.12989/scs.2018.28.4.403.
  48. Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018b), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel Compos. Struct., 28(3), 389-401. https://doi.org/10.12989/scs.2018.28.3.389.
  49. Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018c), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Design, 3(2), 165-190. https://doi.org/10.12989/ACD.2018.3.2.165
  50. Rezaiee-Pajand, M., Masoodi, A.R. and Rajabzadeh-Safaei, N. (2019b), "Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures", Steel Compos. Struct., 30(6), 493-516. https://doi.org/10.12989/scs.2019.30.6.493.
  51. Rezaiee-Pajand, M., Mokhtari, M. and Masoodi, A.R. (2018d), "Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections", CEAS Aeronaut. J., 9(4), 629-648. https://doi.org/10.1007/s13272-018-0311-6.
  52. Rezaiee-Pajand, M., Rajabzadeh-Safaei, N. and Masoodi, A.R. (2020a), "An efficient curved beam element for thermomechanical nonlinear analysis of functionally graded porous beams", Structures, 1035-1049. https://doi.org/10.1016/j.istruc.2020.08.038.
  53. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2020b), "Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method", Aerosp. Sci. Technol., 105, 105998. https://doi.org/10.1016/j.ast.2020.105998.
  54. Sapkas, A. and Kollar, L.P. (2002), "Lateral-torsional buckling of composite beams", Int. J. Solid. Struct., 39(11), 2939-2963. https://doi.org/10.1016/S0020-7683(02)00236-6.
  55. Seah, L. and Khong, P. (1990), "Lateral-torsional buckling of channel beams", J. Constr. Steel Res., 17(4), 265-282. https://doi.org/10.1016/0143-974X(90)90076-S.
  56. Shooshtari, A., Moghaddam, S.H. and Masoodi, A.R. (2015), "Pushover analysis of gabled frames with semi-rigid connections", Steel Compos.Struct., 18(6), 1557-1568. https://doi.org/10.12989/scs.2015.18.6.1557.
  57. Soltani, M., Asgarian, B. and Mohri, F. (2019), "Improved finite element model for lateral stability analysis of axially functionally graded nonprismatic I-beams", Int. J. Struct. Stab. Dynam., 19(9), 1950108. https://doi.org/10.1142/S0219455419501086.
  58. Thai, H.T., Kim, S.E. and Kim, J. (2017), "Improved refined plastic hinge analysis accounting for local buckling and lateral-torsional buckling", Steel Compos. Struct., 24(3), 339-349. https://doi.org/10.12989/scs.2017.24.3.339.
  59. Tokarz, F. and Sandhu, R.S. (1972), "Lateral-torsion buckling of parabolic arches", J. Struct. Division, 98(5), 1161-1179. https://doi.org/10.1061/JSDEAG.0003230
  60. Tokarz, F.J. (1968), Lateral-torsional buckling of arches, The Ohio State University.
  61. Trahair, N.S. (2017), Flexural-torsional buckling of structures, Routledge.
  62. Trahair, N.S. and Papangelis, J.P. (1987), "Flexural-torsional buckling of monosymmetric arches", J. Struct. Eng., 113(10), 2271-2288. https://doi.org/10.1061/(ASCE)0733-9445(1987)113:10(2271)
  63. Usami, T. and Koh, S. (1980), "Large displacement theory of thin-walled curved members and its application to lateral-torsional buckling analysis of circular arches", Int. J. Solid. Struct., 16(1): 71-95. https://doi.org/10.1016/0020-7683(80)90096-7.
  64. van der Merwe, P., Van Wyk, M. and van den Berg, G. (1990), "Lateral torsional buckling strength of doubly symmetric stainless steel beams".
  65. Wang, S.T., Yost, M.I. and Tien, Y.L. (1977), "Lateral buckling of locally buckled beams using finite element techniques", Comput. Struct., 7(3), 469-475. https://doi.org/10.1016/0045-7949(77)90084-0.
  66. Xu, Y.L., et al. (2018), "Experimental and numerical study on lateral-torsional buckling behavior of high performance steel beams", Int. J. Struct. Stab. Dynam., 18(7), 1850090. https://doi.org/10.1142/S0219455418500906.
  67. Yoo, C.H. and Lee, S. (2011), Stability of structures: principles and applications.
  68. Yuan, W.B., Kim, B. and Chen, C.Y. (2013), "Lateral-torsional buckling of steel web tapered tee-section cantilevers", J. Constr. Steel Res., 87, 31-37. https://doi.org/10.1016/j.jcsr.2013.03.026.
  69. Ziane, N., et al. (2015), "Investigation of the Instability of FGM box beams", Struct. Eng. Mech., 54(3), 579-595. http://dx.doi.org/10.12989/sem.2015.54.3.579.