DOI QR코드

DOI QR Code

Sensor technology for environmental monitoring of shrimp farming

새우양식 환경 모니터링을 위한 센서기술 동향 분석

  • Hur, Shin (Dept. of Nature-Inspired System and Application, Korea Institute of Machinery and Materials) ;
  • Park, Jung Ho (Dept. of Thermal Systems, Korea Institute of Machinery and Materials) ;
  • Choi, Sang Kyu (Dept. of Robotics and Mechatronics, Korea Institute of Machinery and Materials) ;
  • Lee, Chang Won (Freshwater Fish Research Center, jeollabuk-do Fisherise Research Institute) ;
  • Kim, Ju Wan (Freshwater Fish Research Center, jeollabuk-do Fisherise Research Institute)
  • 허신 (한국기계연구원 자연모사응용연구실) ;
  • 박중호 (한국기계연구원 열시스템연구실) ;
  • 최상규 (한국기계연구원 로봇메카트로닉스연구실) ;
  • 이창원 (전라북도수산기술연구소 민물고기연구센터) ;
  • 김주완 (전라북도수산기술연구소 민물고기연구센터)
  • Received : 2021.05.11
  • Accepted : 2021.05.24
  • Published : 2021.05.31

Abstract

In this study, the IoT sensor technology required for improving the survival rate and high-density productivity of individual shrimp in smart shrimp farming (which involves the usage of recirculating aquaculture systems and biofloc technology) was analyzed. The principles and performances of domestic and overseas water quality monitoring IoT sensors were compared. Furthermore, the drawbacks of existing aquaculture monitoring technologies and the countermeasures for future aquaculture monitoring technologies were examined. In particular, for farming white-legged shrimp, an IoT sensor was employed to collect measurement indicators for managing the water quality environment in real-time, and the IoT sensor-based real-time monitoring technology was then analyzed for implementing the optimal farming environment. The results obtained from this study can potentially contribute to the realization of an autonomous farming platform that can improve the survival rate and productivity of shrimp, achieve feed reduction, improve the water quality environment, and save energy.

RAS(Recirculating aquaculture system) 방식 또는 바이오플락 기술를 사용한 흰다리 새우의 육상 양식을 통해서 새우 개체의 생존율과 고밀도 생산율을 향상시키기 위한 양식의 원리 및 장치 구성, 국내외 수질 모니터링 센서, 현재의 양식 모니터링 시스템의 문제점 파악 및 미래의 양식 모니터링을 위한 대책을 분석 하였다. 흰다리 새우 양식을 위해서는 수조별 온도, pH, DO, 염도 측정이 기본적으로 필요하며, 암모니아성 질소, 질산성 질소, 아질산성 질소, 생장 관리를 위한 이온성 물질의 측정이 필요하다. 특히 센서재질에 있어서는 SUS304도 부식이 되는 고염도 환경에서 견딜수 있어야 하며, 고탁도 및 부유물질에 의한 생물 부착에 견딜 수 있는 센서가 사용되어야 한다. 또한 내구성 및 측정값 신뢰도, 가격 경쟁력 있는 센서 및 시스템 공급이 필요하다. 바이오플락 양식 환경에서는 고염분, 고부유물 환경에서 견딜 수 있는 센서의 내구성과 데이터 안정성, 신뢰도가 무엇보다 중요하다. 향후 흰다리 새우 및 수산 양식을 위한 최적 양식환경을 확보하기 위해서는 양식 생육 환경 현장의 수질을 측정하고 적정 환경을 결정하며, 자동제어 시스템을 이용하여 제어하고 축적된 데이터를 활용 및 분석하여 지능적으로 관리하는 기술을 개발하는 것이 필요하다.

Keywords

Acknowledgement

본 연구는 전라북도가 지원한 기획과제(과제번호 GM4640, 아쿠아 디지털 트윈 구축사업 상세전략 수립 및 타당성 조사 용역)와 한국기계연구원 주요사업과제(과제번호 NK232E) 및 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구(MT2020)의 지원을 받아 수행하였습니다.

References

  1. J. Bregnballe, A Guide to Recirculation Aquaculture-2015 edition, Eurofisg, Copenhagen, pp. 1-100, 2015.
  2. http://www.isps-japan.or.jp/technology.html (retrieved on Sep. 20, 2020).
  3. S. K. Choi, Y. S. Sonh, S. Hur, Y. B Ham, J. H. Park, T. J. Min, C. H. Kim, and B. T. Kim, "Jeonbuk-type advanced smart farming system construction project detailed strategy and feasibility study: Aqua digital twin construction project", Plan. Rep. of Korea Inst. Mach. Mater., Korea, pp. 1-813, 2020.
  4. "Japan AESAN new industry creation demonstration business report-productivity improvement project of aquaculture business by introduction of IoT", Internet Initiative Japan Inc., Tokyo, pp. 1-84, 2019.
  5. J. W. Choi, "Establishment of test bed to analyze and improve security vulnerability of IoT-based smart farm controller", Master's thesis, Sogang University, Korea, pp. 1-66, 2018.
  6. https://www.aquaeasy.life/(retrieved on Sep. 20, 2020).
  7. http://www.lotuselectrode.com/?page_id=4421 (retrieved on Sep. 20, 2020).
  8. http://goc2001.com/(retrieved on Sep. 20, 2020).
  9. http://www.hb-technology.co.kr/product/goods.php?PageNum=3&subNum=1&GCODE= G1476320595616 (retrieved on Sep. 20, 2020).
  10. http://www.dyscale.co.kr/index/bbs/board.php?bo_tables3&sca=%EC%88%98%EC%A7%88%ED%99%98%EA%B2%BD&wr_6=4(retrieved on Sep. 20, 2020).
  11. http://www.globit.co.kr/skin/page/business_solution. html (retrieved on Sep. 20, 2020).
  12. http://jointree.co.kr/theme/theme02/biz/biz_02_05.php (retrieved on Sep. 20, 2020).
  13. S. W. Kim, and Y. S. Choi, "IoT-based automatic water quality measurement system for circulating filtration farms", J. Inst. Electronics Commun. Sci., Vol. 12, No. 3, pp.477-484, 2017.
  14. https://www.ysi.com/products/aquaculture-process-monitors-and-sensors (retrieved on Sep. 20, 2020).
  15. https://in-situ.com/en/ (retrieved on Sep. 20, 2020).
  16. https://www.oxyguard.dk/ (retrieved on Sep. 20, 2020).
  17. https://www.s-can.at/ (retrieved on Sep. 20, 2020).
  18. https://intl.hannainst.com/products/portable-meters/ph/waterproof-portable-ph-meter-hi991001.html (retrieved on Sep. 20, 2020).
  19. https://www.xylemanalytics.com/en/ (retrieved on Sep. 20, 2020).
  20. http://www.koreadigital.com/index.php?mid=sciencecube_-goods&page=2&document_srl=824(retrieved on Sep. 20, 2020).
  21. http://hmdigital.com/ (retrieved on Sep. 20, 2020).
  22. https://www.horiba.com/en_en/water-liquid/ (retrieved on Sep. 20, 2020).
  23. http://www.istek.co.kr/ (retrieved on Sep. 20, 2020).
  24. https://www.prominent.co.kr/ko/(retrieved on Sep. 20, 2020).
  25. https://www.aqua-manager.com/(retrieved on Sep. 20, 2020).
  26. https://www.billundaquaculture.com/why-ras/(retrieved on Sep. 20, 2020).
  27. https://nofima.no/en/(retrieved on Sep. 20, 2020).
  28. Y. J. Hwang, J. J. Han, S. M. Moon, and H. M. Yoon, "2019 Test Research Project Report", Inst. Mar. Fisheries Res. Gyeonggi-do, No. 29. pp. 1-45, 2020.
  29. J. H. Lee, H. S. Kim, Y. S. Lee, S. J. Cha, B. S. Kim, and H. S. Choi, "Guide to eco-friendly biofloc farming technology", Inland Aquaculture Res. Cent., Ministry Oceans Fisheries, Natl. Inst. Fisheries Sci., Changwon, pp.1-96, 2018.
  30. J. S. Park, "Environmental Sensor Technology Trend", J. KSME, Vol. 54, No. 10, pp. 26-33, 2014.
  31. S. C. Lee and C. M. Ma, "Analysis on the development trend of advanced smart aquaculture technology", J. Soc. Control. Robot Syst., Vol. 22, No. 3, pp. 26-33, 2016.
  32. H. J. Jang, B. R. Moon, S. G. Yoon, and T. S. Jin, "Development and performance evaluation of multiple sensor for Groundwater Quality Monitoring and Remote Control System using IoT", J. Korea Inf. Commun. Soc., Vol. 21, No. 10, pp.1957-1963, 2017.
  33. K. Preetham, B. C. Mallikarjun, K. Umesha, F. M. Mahesh, and S. Neethan., "Aquaculture monitoring and control system: An IoT based approach", IJARIIT, Vol.5, No. 2, pp.1167-1170, 2019.
  34. I. H. Ko and S. W. Chung, "Reservoir Turbidity Monitoring and Prediction Technology Development Trend/Water and Future", Korea Water Resour. Association, Vol. 41, No. 7, pp. 18-24, 2008.
  35. A. E. Copping, B. Polagye, R. Suryan, S. Kramer, J. B. Saracino, and C. Smith, "Instrumentation for monitoring around marine renewable energy converters: Workshop final report", Pac. Northwest Natl. Lab., Richland, WA, 2014.
  36. C. Ullman, M. Rhodes, T. Hanson, D. Cline, and D. A. Davis, "A New Paradigm for Managing Shrimp Feeding", World Aquaculture, pp. 30-34, 2017.
  37. H. Y. Kang and Y. S. Jang, "Real-time water quality monitoring system using a highly reliable wireless sensor network", J. Sens. Sci. Technol., Vol. 24, No. 5, pp. 331-341, 2015. https://doi.org/10.5369/JSST.2015.24.5.331