DOI QR코드

DOI QR Code

Comparative Phenotypic Analysis of Anabaena sp. PCC 7120 Mutants of Porin-like Genes

  • Received : 2021.03.04
  • Accepted : 2021.04.06
  • Published : 2021.05.28

Abstract

Porins are essential for the viability of Gram-negative bacteria. They ensure the uptake of nutrients, can be involved in the maintenance of outer membrane integrity and define the antibiotic or drug resistance of organisms. The function and structure of porins in proteobacteria is well described, while their function in photoautotrophic cyanobacteria has not been systematically explored. We compared the domain architecture of nine putative porins in the filamentous cyanobacterium Anabaena sp. PCC 7120 and analyzed the seven candidates with predicted OprB-domain. Single recombinant mutants of the seven genes were created and their growth capacity under different conditions was analyzed. Most of the putative porins seem to be involved in the transport of salt and copper, as respective mutants were resistant to elevated concentrations of these substances. In turn, only the mutant of alr2231 was less sensitive to elevated zinc concentrations, while mutants of alr0834, alr4741 and all4499 were resistant to high manganese concentrations. Notably the mutant of alr4550 shows a high sensitivity against harmful compounds, which is indicative for a function related to the maintenance of outer membrane integrity. Moreover, the mutant of all5191 exhibited a phenotype which suggests either a higher nitrate demand or an inefficient nitrogen fixation. The dependency of porin membrane insertion on Omp85 proteins was tested exemplarily for Alr4550, and an enhanced aggregation of Alr4550 was observed in two omp85 mutants. The comparative analysis of porin mutants suggests that the proteins in parts perform distinct functions related to envelope integrity and solute uptake.

Keywords

Acknowledgement

We would like to thank Prof. Enrique Flores for providing material used for mutant generation. We thank Dr. Sotirios Fragkostefanakis and Julia Graf for comments on the manuscript. Moreover, we thank Dr. H.-Michael Seitz and Prof. Dr. Horst Marschall for support with the ICP-MS analysis. The work was funded by the Deutsche Forschungsgemeinschaft DFG SCHL585/7-2 to ES. HS received a stipend of the Buchmann Foundation.

References

  1. Jurgens UJ, Drews G, Weckesser J. 1983. Primary structure of the peptidoglycan from the unicellular cyanobacterium Synechocystis sp. strain PCC 6714. J. Bacteriol. 154: 471-478. https://doi.org/10.1128/jb.154.1.471-478.1983
  2. Wilk L, Strauss M, Rudolf M, Nicolaisen K, Flores E, Kuhlbrandt W, et al. 2011. Outer membrane continuity and septosome formation between vegetative cells in the filaments of Anabaena sp. PCC 7120. Cell. Microbiol. 13: 1744-1754. https://doi.org/10.1111/j.1462-5822.2011.01655.x
  3. Matias VRF, Al-Amoudi A, Dubochet J, Beveridge TJ. 2003. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185: 6112-6118. https://doi.org/10.1128/JB.185.20.6112-6118.2003
  4. Galdiero S, Falanga A, Cantisani M, Tarallo R, Elena Della Pepa M, D'Oriano V, et al. 2013. Microbe-Host Interactions: Structure and Role of Gram-Negative Bacterial Porins. Curr. Protein Pept. Sci. 13: 843-854. https://doi.org/10.2174/138920312804871120
  5. Nikaido H. 1994. Porins and specific diffusion channels in bacterial outer membranes. J. Biol. Chem. 269: 3905-3908. https://doi.org/10.1016/S0021-9258(17)41716-9
  6. Choi U, Lee CR. 2019. Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in Escherichia coli. Front. Microbiol. 10: 953. https://doi.org/10.3389/fmicb.2019.00953
  7. Novikova OD, Solovyeva TF. 2009. Nonspecific porins of the outer membrane of Gram-negative bacteria: Structure and functions. Biochem. Suppl. Ser. A: Membr. Cell. Biol. 3: 3-15.
  8. Schirmer T, Keller TA, Wang YF, Rosenbusch JP. 1995. Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution. Science 267: 512-516. https://doi.org/10.1126/science.7824948
  9. Conlan S, Zhang Y, Cheley S, Bayley H. 2000. Biochemical and biophysical characterization of OmpG: A monomeric porin. Biochemistry 39: 11845-11854. https://doi.org/10.1021/bi001065h
  10. Kim KH, Aulakh S, Paetzel M. 2012. The bacterial outer membrane β-barrel assembly machinery. Protein Sci. 21: 751-768. https://doi.org/10.1002/pro.2069
  11. Simmerman RF, Dave AM, Bruce BD. 2014. Structure and Function of POTRA Domains of Omp85/TPS Superfamily. pp. 1-34. In International Review of Cell and Molecular Biology, Elsevier Inc.
  12. Kumar K, Mella-Herrera RA, Golden JW. 2010. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2: a000315. https://doi.org/10.1101/cshperspect.a000315
  13. Moslavac S, Reisinger V, Berg M, Mirus O, Vosyka O, Ploscher M, et al. 2007. The proteome of the heterocyst cell wall in Anabaena sp. PCC 7120. Biol. Chem. 388: 823-829. https://doi.org/10.1515/BC.2007.079
  14. Hancock REW. 1987. Role of porins in outer membrane permeability. J. Bacteriol. 169: 929-933. https://doi.org/10.1128/jb.169.3.929-933.1987
  15. Jap BK, Walian PJ. 1990. Biophysics of the structure and function of porins. Q. Rev. Biophys. 23: 367-403. https://doi.org/10.1017/S003358350000559X
  16. Nikaido H. 2003. Molecular basis of bacterial outer membrane prmeability revisited. Microbiol. Mol. Biol. Rev. 67: 593-656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
  17. Hansel A, Tadros MH. 1998. Characterization of two pore-forming proteins isolated from the outer membrane of Synechococcus PCC 6301. Curr. Microbiol. 36: 321-326. https://doi.org/10.1007/s002849900316
  18. Brechtel E, Bahl H. 1999. In Thermoanaerobacterium thermosulfurigenes EM1 S-layer homology domains do not attach to peptidoglycan. J. Bacteriol. 181: 5017-5023. https://doi.org/10.1128/JB.181.16.5017-5023.1999
  19. Ilk N, Kosma P, Puchberger M, Egelseer EM, Mayer HF, Sleytr UB, et al. 1999. Structural and functional analyses of the secondary cell wall polymer of Bacillus sphaericus CCM 2177 that serves as an S-layer-specific anchor. J. Bacteriol. 181: 7643-7646. https://doi.org/10.1128/JB.181.24.7643-7646.1999
  20. Kern J, Ryan C, Faull K, Schneewind O. 2010. Bacillus anthracis surface-layer proteins assemble by binding to the secondary cell wall polysaccharide in a manner that requires csaB and tagO. J. Mol. Biol. 401: 757-775. https://doi.org/10.1016/j.jmb.2010.06.059
  21. Lupas A, Engelhardt H, Peters J, Santarius U, Volker S, Baumeister W. 1994. Domain structure of the Acetogenium kivui surface layer revealed by electron crystallography and sequence analysis. J. Bacteriol. 176: 1224-1233. https://doi.org/10.1128/jb.176.5.1224-1233.1994
  22. Kowata H, Tochigi S, Takahashi H, Kojima S. 2017. Outer membrane permeability of cyanobacterium Synechocystis sp. strain PCC 6803: Studies of passive diffusion of small organic nutrients reveal the absence of classical porins and intrinsically low permeability. J. Bacteriol. 199: e00371-17.
  23. Ekman M, Picossi S, Campbell EL, Meeks JC, Flores E. 2013. A Nostoc punctiforme sugar transporter necessary to establish a cyanobacterium-plant symbiosis. Plant. Physiol. 161: 1984-1992. https://doi.org/10.1104/pp.112.213116
  24. Simm S, Keller M, Selymesi M, Schleiff E. 2015. The composition of the global and feature specific cyanobacterial core-genomes. Front. Microbiol. 6: 219. https://doi.org/10.3389/fmicb.2015.00219
  25. Qiu G, Jiang H, Lis H, Li Z, Deng B, Shang J, et al. 2020. A unique porin meditates iron-selective transport through cyanobacterial outer membranes. Environ. Microbiol. 23: 376-390.
  26. Hahn A, Schleiff E. 2014. The Cell Envelope. In The Cell Biology of Cyanobacteria, Flores E, Herrero A, eds. pp. 29-87. Caister Academic Press, U.K., Norfolk.
  27. Oliveira P, Martins NM, Santos M, Couto NAS, Wright PC, Tamagnini P. 2015. The Anabaena sp. PCC 7120 exoproteome: Taking a peek outside the box. Life 5: 130-163. https://doi.org/10.3390/life5010130
  28. Moslavac S, Bredemeier R, Mirus O, Granvogl B, Eichacker LA, Schleiff E. 2005. Proteomic analysis of the outer membrane of Anabaena sp. strain PCC 7120. J. Proteome. Res. 4: 1330-1338. https://doi.org/10.1021/pr050044c
  29. Hahn A, Stevanovic M, Mirus O, Schleiff E. 2012. The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J. Biol. Chem. 287: 41126-41138. https://doi.org/10.1074/jbc.M112.396010
  30. Acland A, Agarwala R, Barrett T, Beck J, Benson DA, Bollin C, et al. 2014. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 42: D7-D17. https://doi.org/10.1093/nar/gkt1146
  31. Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2004. WebLogo: A sequence logo generator. Genome Res. 14: 1188-1190. https://doi.org/10.1101/gr.849004
  32. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7: 539. https://doi.org/10.1038/msb.2011.75
  33. Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 47: W636-W641. https://doi.org/10.1093/nar/gkz268
  34. Valladares A, Rodriguez V, Camargo S, Martinez-Noel GMA, Herrero A, Luque I. 2011. Specific role of the cyanobacterial pipX factor in the heterocysts of Anabaena sp. strain PCC 7120. J. Bacteriol. 193: 1172-1182. https://doi.org/10.1128/JB.01202-10
  35. Elhai J, Wolk PC. 1988. A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68: 119-138. https://doi.org/10.1016/0378-1119(88)90605-1
  36. Elhai J, Wolk CP. 1988. Conjugal transfer of DNA to cyanobacteria. Methods Enzymol. 167: 747-754. https://doi.org/10.1016/0076-6879(88)67086-8
  37. Olmedo-Verd E, Muro-Pastor AM, Flores E, Herrero A. 2006. Localized induction of the ntcA regulatory gene in developing heterocysts of Anabaena sp. strain PCC 7120. J. Bacteriol. 188: 6694-6699. https://doi.org/10.1128/JB.00509-06
  38. Wolk CP, Vonshak A, Kehoe P, Elhai J. 1984. Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc. Natl. Acad. Sci. USA 81: 1561-1565. https://doi.org/10.1073/pnas.81.5.1561
  39. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY. 1979. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1-61.
  40. Shcolnick S, Shaked Y, Keren N. 2007. A role for mrgA, a DPS family protein, in the internal transport of Fe in the cyanobacterium Synechocystis sp. PCC6803. Biochim. Biophys. Acta-Bioenerg. 1767: 814-819. https://doi.org/10.1016/j.bbabio.2006.11.015
  41. Videau P, Cozy LM. 2019. Anabaena sp. strain PCC 7120: Laboratory Maintenance, Cultivation, and Heterocyst Induction. Curr. Protoc. Microbiol. 52: e71. https://doi.org/10.1002/cpmc.71
  42. Stevanovic M, Hahn A, Nicolaisen K, Mirus O, Schleiff E. 2012. The components of the putative iron transport system in the cyanobacterium Anabaena sp. PCC 7120. Environ. Microbiol. 14: 1655-1670. https://doi.org/10.1111/j.1462-2920.2011.02619.x
  43. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  44. Zeng L, Guo J, Xu HB, Huang R, Shao W, Yang L, et al. 2013. Direct Blue 71 staining as a destaining-free alternative loading control method for Western blotting. Electrophoresis 34: 2234-2239. https://doi.org/10.1002/elps.201300140
  45. Brouwer EM, Ngo G, Yadav S, Ladig R, Schleiff E. 2019. Tic22 from Anabaena sp. PCC 7120 with holdase function involved in outer membrane protein biogenesis shuttles between plasma membrane and Omp85. Mol. Microbiol. 111: 1302-1316. https://doi.org/10.1111/mmi.14222
  46. Tripp J, Hahn A, Koenig P, Flinner N, Bublak D, Brouwer EM, et al. 2012. Structure and conservation of the periplasmic targeting factor Tic22 protein from plants and cyanobacteria. J. Biol. Chem. 287: 24164-24173. https://doi.org/10.1074/jbc.M112.341644
  47. Sharon S, Salomon E, Kranzler C, Lis H, Lehmann R, Georg J, et al. 2014. The hierarchy of transition metal homeostasis: Iron controls manganese accumulation in a unicellular cyanobacterium. Biochim. Biophys. Acta - Bioenerg. 1837: 1990-1997. https://doi.org/10.1016/j.bbabio.2014.09.007
  48. Nicolaisen K, Hahn A, Schleiff E. 2009. The cell wall in heterocyst formation by Anabaena sp. PCC 7120. J. Basic Microbiol. 49: 5-24. https://doi.org/10.1002/jobm.200800300
  49. Samsudin F, Ortiz-Suarez ML, Piggot TJ, Bond PJ, Khalid S. 2016. OmpA: A flexible clamp for bacterial cell wall attachment. Structure 24: 2227-2235. https://doi.org/10.1016/j.str.2016.10.009
  50. Koebnik R, Locher KP, Van Gelder P. 2000. Structure and function of bacterial outer membrane proteins: Barrels in a nutshell. Mol. Microbiol. 37: 239-253. https://doi.org/10.1046/j.1365-2958.2000.01983.x
  51. Bosch D, Scholten M, Verhagen C, Tommassen J. 1989. The role of the carboxy-terminal membrane-spanning fragment in the biogenesis of Escherichia coli K12 outer membrane protein PhoE. Mol. Gen. Genet. MGG 216: 144-148. https://doi.org/10.1007/BF00332243
  52. De Cock H, Struyve M, Kleerebezem M, Van Der Krift T, Tommassen J. 1997. Role of the carboxy-terminal phenylalanine in the biogenesis of outer membrane protein PhoE of Escherichia coli K-12. J. Mol. Biol. 269: 473-478. https://doi.org/10.1006/jmbi.1997.1069
  53. Struyve M, Moons M, Tommassen J. 1991. Carboxy-terminal phenylalanine is essential for the correct assembly of a bacterial outer membrane protein. J. Mol. Biol. 218: 141-147. https://doi.org/10.1016/0022-2836(91)90880-F
  54. Paramasivam N, Habeck M, Linke D. 2012. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not? BMC Genomics 13: 510. https://doi.org/10.1186/1471-2164-13-510
  55. Gessmann D, Chung YH, Danoff EJ, Plummer AM, Sandlin CW, Zaccai NR, et al. 2014. Outer membrane β-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc. Natl. Acad. Sci. USA 111: 5878-5883. https://doi.org/10.1073/pnas.1322473111
  56. Robert V, Volokhina EB, Senf F, Bos MP, Van Gelder P, Tommassen J. 2006. Assembly factor Omp85 recognizes its outer membrane protein substrates by a species-specific C-terminal motif. PLoS Biol. 4: e377. https://doi.org/10.1371/journal.pbio.0040377
  57. Kutik S, Stojanovski D, Becker L, Becker T, Meinecke M, Kruger V, et al. 2008. Dissecting Membrane Insertion of Mitochondrial β-Barrel Proteins. Cell 132: 1011-1024. https://doi.org/10.1016/j.cell.2008.01.028
  58. Nicolaisen K, Mariscal V, Bredemeier R, Pernil R, Moslavac S, Lopez-Igual R, et al. 2009. The outer membrane of a heterocystforming cyanobacterium is a permeability barrier for uptake of metabolites that are exchanged between cells. Mol. Microbiol. 74: 58-70. https://doi.org/10.1111/j.1365-2958.2009.06850.x
  59. Hsueh YC, Brouwer EM, Marzi J, Mirus O, Schleiff E. 2015. Functional properties of LptA and LptD in Anabaena sp. PCC 7120. Biol. Chem. 396: 1151-1162. https://doi.org/10.1515/hsz-2014-0322
  60. Liu X, Ferenci T. 1998. Regulation of porin-mediated outer membrane permeability by nutrient limitation in Escherichia coli. J. Bacteriol. 180: 3917-3922. https://doi.org/10.1128/JB.180.15.3917-3922.1998
  61. Berman-Frank I, Cullen JT, Shaked Y, Sherrell RM, Falkowski PG. 2001. Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 46: 1249-1260. https://doi.org/10.4319/lo.2001.46.6.1249
  62. Paerl HW, Crocker KM, Prufert LE. 1987. Limitation of N2 fixation in coastal marine waters: Relative importance of molybdenum, iron, phosphorus, and organic matter availability. Limnol. Oceanogr. 32: 525-536. https://doi.org/10.4319/lo.1987.32.3.0525
  63. Rudolf M, Kranzler C, Lis H, Margulis K, Stevanovic M, Keren N, Schleiff E. 2015. Multiple modes of iron uptake by the filamentous, siderophore-producing cyanobacterium, Anabaena sp. PCC 7120. Mol. Microbiol. 97: 577-588. https://doi.org/10.1111/mmi.13049
  64. Barron A, May G, Bremer E, Villarejo M. 1986. Regulation of envelope protein composition during adaptation to osmotic stress in Escherichia coli. J. Bacteriol. 167: 433-438. https://doi.org/10.1128/jb.167.2.433-438.1986
  65. Dekker N, Tommassen J, Lustig A, Rg J, Rosenbusch P, Verheij HM. 1997. Dimerization regulates the enzymatic activity of Escherichia coli outer membrane Phospholipase A. J. Biol. Chem. 272: 3179-3184. https://doi.org/10.1074/jbc.272.6.3179
  66. Volokhina EB, Beckers F, Tommassen J, Bos MP. 2009. The β-barrel outer membrane protein assembly complex of Neisseria meningitidis. J. Bacteriol. 191: 7074-7085. https://doi.org/10.1128/JB.00737-09
  67. Braun M, Silhavy TJ. 2002. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol. Microbiol. 45: 1289-1302. https://doi.org/10.1046/j.1365-2958.2002.03091.x
  68. Genevrois S, Steeghs L, Roholl P, Letesson J-J, van der Ley P. 2003. The Omp85 protein of Neisseria meningitidis is required for lipid export to the outer membrane. EMBO J. 22: 1780-1789. https://doi.org/10.1093/emboj/cdg174
  69. Steeghs L, de Cock H, Evers E, Zomer B, Tommassen J, van der Ley P. 2001. Outer membrane composition of a lipopolysaccharide-defcient Neisseria meningitidis mutant. EMBO J. 20: 6937-6945. https://doi.org/10.1093/emboj/20.24.6937
  70. Sklar JG, Wu T, Kahne D, Silhavy TJ. 2007. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev. 21: 2473-2484. https://doi.org/10.1101/gad.1581007
  71. Smit J, Kamio Y, Nikaido H. 1975. Outer membrane of Salmonella typhimurium: chemical analysis and freeze fracture studies with lipopolysaccharide mutants. J. Bacteriol. 124: 942-958. https://doi.org/10.1128/jb.124.2.942-958.1975
  72. Osborn MJ, Gander JE, Parisi E, Carson J. 1972. Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane . J. Biol. Chem. 247: 3962-3972. https://doi.org/10.1016/S0021-9258(19)45127-2
  73. Smith SGJ, Mahon V, Lambert MA, Fagan RP. 2007. A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol. Lett. 273: 1-11. https://doi.org/10.1111/j.1574-6968.2007.00778.x
  74. Pages J-M, James CE, Winterhalter M. 2008. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat. Rev. Microbiol. 6: 893-903. https://doi.org/10.1038/nrmicro1994
  75. Gledhill M, Buck KN. 2012. The organic complexation of iron in the marine environment: A review. Front. Microbiol. 3: 69. https://doi.org/10.3389/fmicb.2012.00069
  76. Rudolf M, Stevanovic M, Kranzler C, Pernil R, Keren N, Schleiff E. 2016. Multiplicity and specificity of siderophore uptake in the cyanobacterium Anabaena sp. PCC 7120. Plant. Mol. Biol. 92: 57-69. https://doi.org/10.1007/s11103-016-0495-2
  77. Lis H, Kranzler C, Keren N, Shaked Y. 2015. A comparative study of Iron uptake rates and mechanisms amongst marine and fresh water Cyanobacteria: prevalence of reductive Iron uptake. Life 5: 841-860. https://doi.org/10.3390/life5010841
  78. Morel FMM, Kustka AB, Shaked Y. 2008. The role of unchelated Fe in the iron nutrition of phytoplankton. Limnol. Oceanogr. 53: 400-404. https://doi.org/10.4319/lo.2008.53.1.0400
  79. Fresenborg LS, Graf J, Schatzle H, Schleiff E. 2020. Iron homeostasis of cyanobacteria: advancements in siderophores and metal transporters. pp. 85-117. In Advances in Cyanobacterial Biology, Elsevier.
  80. Napolitano M, Rubio MA, Santamaria-Gomez J, Olmedo-Verd E, Robinson NJ, Luque I. 2012. Characterization of the response to Zinc deficiency in the Cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol. 194: 2426-2436. https://doi.org/10.1128/JB.00090-12
  81. Calmettes C, Ing C, Buckwalter CM, El Bakkouri M, Chieh-Lin Lai C, Pogoutse A, et al. 2015. The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nat. Commun. 6: 7996. https://doi.org/10.1038/ncomms8996
  82. Stork M, Bos MP, Jongerius I, de Kok N, Schilders I, Weynants VE, et al. 2010. An outer membrane receptor of Neisseria meningitidis involved in zinc acquisition with vaccine potential. PLoS Pathog. 6: e1000969. https://doi.org/10.1371/journal.ppat.1000969
  83. Barnett JP, Scanlan DJ, Blindauer CA. 2014. Identification of major zinc-binding proteins from a marine cyanobacterium: Insight into metal uptake in oligotrophic environments. Metallomics 6: 1254-1268. https://doi.org/10.1039/C4MT00048J
  84. Gonzalez-Sanchez A, Cubillas CA, Miranda F, Davalos A, Garcia-de los Santos A. 2018. The ropAe gene encodes a porin-like protein involved in copper transit in Rhizobium etli CFN42. Microbiologyopen 7: e00573. https://doi.org/10.1002/mbo3.573
  85. Haeili M, Speer A, Rowland JL, Niederweis M, Wolschendorf F. 2015. The role of porins in copper acquisition by mycobacteria. Int. J. Mycobacteriol. 4: 91-92. https://doi.org/10.1016/j.ijmyco.2014.11.052
  86. Hohle TH, Franck WL, Stacey G, O'Brian MR. 2011. Bacterial outer membrane channel for divalent metal ion acquisition. Proc. Natl. Acad. Sci. USA 108: 15390-15395. https://doi.org/10.1073/pnas.1110137108
  87. Lutkenhaus JF. 1977. Role of a major outer membrane protein in Escherichia coli. J. Bacteriol. 131: 631-637. https://doi.org/10.1128/jb.131.2.631-637.1977
  88. Speer A, Rowland JL, Haeili M, Niederweis M, Wolschendorf F. 2013. Porins increase copper susceptibility of Mycobacterium tuberculosis. J. Bacteriol. 195: 5133-5140. https://doi.org/10.1128/JB.00763-13
  89. Eisenhut M. 2019. Manganese homeostasis in cyanobacteria. Plants (Basel) 9: 18. https://doi.org/10.3390/plants9010018
  90. Gandini C, Schmidt SB, Husted S, Schneider A, Leister D. 2017. The transporter SynPAM71 is located in the plasma membrane and thylakoids, and mediates manganese tolerance in Synechocystis PCC6803. New Phytol. 215: 256-268. https://doi.org/10.1111/nph.14526
  91. Nicolaisen K, Hahn A, Valdebenito M, Moslavac S, Samborski A, Maldener I, et al. 2010. The interplay between siderophore secretion and coupled iron and copper transport in the heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. Biochim. Biophys. Acta - Biomembr. 1798: 2131-2140. https://doi.org/10.1016/j.bbamem.2010.07.008
  92. Schleiff E, Maier UG, Becker T. 2011. Omp85 in eukaryotic systems: One protein family with distinct functions. Biol. Chem. 392: 21-27. https://doi.org/10.1515/bc.2011.005
  93. Webb CT, Heinz E, Lithgow T. 2012. Evolution of the β-barrel assembly machinery. Trends Microbiol. 20: 612-620. https://doi.org/10.1016/j.tim.2012.08.006

Cited by

  1. A TonB-Like Protein, SjdR, Is Involved in the Structural Definition of the Intercellular Septa in the Heterocyst-Forming Cyanobacterium Anabaena vol.12, pp.3, 2021, https://doi.org/10.1128/mbio.00483-21
  2. The Role of Outer Membrane Protein(s) Harboring SLH/OprB-Domains in Extracellular Vesicles’ Production in Synechocystis sp. PCC 6803 vol.10, pp.12, 2021, https://doi.org/10.3390/plants10122757
  3. Transporter engineering for the development of cyanobacteria as cell factories: A text analytics guided survey vol.54, 2021, https://doi.org/10.1016/j.biotechadv.2021.107816