DOI QR코드

DOI QR Code

Development trends of Solar cell technologies for Small satellite

소형위성용 태양전지 개발 동향 및 발전 방향

  • Choi, Jun Hee (Korea Research Institute for Defense Technology Planning and Advancement)
  • Received : 2021.04.06
  • Accepted : 2021.05.07
  • Published : 2021.05.31

Abstract

Conventional satellites are generally large satellites that are multi-functional and have high performance. However, small satellites have been gradually drawing attention since the recent development of lightweight and integrated electric, electronic, and optical technologies. As the size and weight of a satellite decrease, the barrier to satellite development is becoming lower due to the cost of manufacture and cheaper launch. However, solar panels are essential for the power supply of satellites but have limitations in miniaturization and weight reduction because they require a large surface area to be efficiently exposed to sunlight. Space solar cells must be manufactured in consideration of various space environments such as spacecraft and environments with solar thermal temperatures. It is necessary to study structural materials for lightweight and high-efficiency solar cells by applying an unfolding mechanism that optimizes the surface-to-volume ratio. Currently, most products are developed and operated as solar cell panels for space applications with a triple-junction structure of InGaP/GaAs/Ge materials for high efficiency. Furthermore, multi-layered junctions have been studied for ultra-high-efficiency solar cells. Flexible thin-film solar cells and organic-inorganic hybrid solar cells are advantageous for material weight reduction and are attracting attention as next-generation solar cells for small satellites.

기존의 인공위성은 다기능·높은 성능을 가진 대형위성을 국가 단위에서 운용하는 것이 일반적이었으나 최근의 전기·전자 및 광학 기술의 경량 소형화 발전에 따라 점차 소형위성이 주목받고 있다. 크기와 무게가 감소됨에 따라 적은 비용으로 개발 및 발사가 가능하여 위성 개발에 진입장벽이 낮아지고 있으나, 인공위성의 전력공급에 필수적인 태양전지 패널의 경우 태양광에 효율적으로 노출되기 위해 넓은 표면적이 필요하여 소형화 및 경량화가 제한적이다. 우주용 태양전지는 우주선과 태양열, 온도와 같은 다양한 우주환경을 고려하여 제작되어야하고, 부피를 최적화하기 위해 전개 매커니즘을 적용하며 경량화 및 고효율화를 위하여 태양전지 셀의 구조적 재료적인 연구개발이 필요하다. 현재 태양전지 패널로 개발되어 운용되고 있는 제품들은 고효율화를 위하여 주로 InGaP/GaAs/Ge 소재의 3중구조를 적용하고 있다. 최근에는 초고효율 다층구조 태양전지를 위하여 4중접합 이상의 구조가 연구되고 있으며, 나아가 소재적으로 경량화에 유리한 유연박막 태양전지, 유기 및 유무기 하이브리드 태양전지 등이 차세대 소형위성용 태양전지로 주목받고 있다.

Keywords

References

  1. NASA. What are SmallSats and CubeSats?, c2017 [cited 2017 August 6], Available From: https://www.nasa.gov/content/what-are-smallsats-and-cubesats (accessed Mar. 25, 2021)
  2. H.D. Kim, W.S. Choe, D.H. Jo, M.G. Kim, J.H. Kim, E.S. Sim, I.H., Hwang, J.C. Kim, S.D. Gang, I.H. Choe, "A Development of Core Technology for Space Exploration Using Nano-satellite", Korea Aerospace Research Institute, pp.17-20, Apr. 2014. DOI: https://doi.org/10.23000/TRKO201700000263
  3. S.W. Kang, J.T. Jang, H.C. Kong, "Current Status of Foreign Country's Space Exploration Using CubeSat", Current Industrial and Technological Trends in Aerospace, Vol.12, No.2, 2014.
  4. J. Straub, D. Whalen, "Student expectations from participating in a small spacecraft development program", Aerospace, Vol.1, pp.18-30, 2014. DOI: https://doi.org/10.3390/aerospace1010018
  5. A. Poghosyan, A. Golkar, "CubeSat evolution: Analyzing CubeSat capabilities for conducting science mission", Prog.Aerosp.Sci., Vol.88, pp.59-83, 2017 DOI: https://doi.org/10.1016/j.paerosci.2016.11.002
  6. M.N. Sweeting, "Modern Small Satellites-Changing the Economics of Space", Proc.IEEE, Vol.106, pp.343-361, 2018. DOI: https://doi.org/10.1109/JPROC.2018.2806218
  7. A. Luque, S. Hegedus. "Handbook of Photovoltaic Science and Engineering", Wiley, 2003, pp.1-43
  8. P.A. Iles. "Evolution of space solar cells". Solar Energy Materials and Solar Cells, Vol. 68, No.1, pp. 1-2, 2001 DOI: https://doi.org/10.1016/S0927-0248(00)00341-X
  9. Y.J. Kim, S.H. Jeong, H.S. Kim, E.Y. Sin, C.J. Kim, H.B. Sin, H.G. Gang, "Research trend and perspect of ultra-high efficiency III-V compound semiconductor solar cell", Bulletin of the Korea Photovoltaic Society, Vol.4, No.1, pp.5-15, 2018.
  10. R. Surampudi, "Solar Power Technologies for Future Planetary Science Missions", Strategic report, NASA/Jet Propulsion Laboratory-Caltech, pp.22-23
  11. T. Jansen, A. Reinders, G. Oomen, J. Bouwmeester, "Performance of the first flight experiment with dedicated space CIGS cells onboard the Delfi-C3 nanosatellite", Proceedings of the 35th IEEE Photovoltaic Specialists Conference(PVSC)2010, Vol.20. No.25, pp.1128-1133, Jun. 2010. DOI: https://doi.org/10.1109/PVSC.2010.5614729
  12. J.M. Plaza, J.A. Vilan, F.A. Agelet, J.B. Mancheno, M.L. Estevez, C.M. Fernandez, F.S. Ares, Xatcobeo, "Small mechanisms for cubesat satellites antenna and solar array deployment", Proceedings of the 40th Aerospace Mechanisms Symposium, NASA Kennedy Space Centre, pp. 415-429, May 12-14. 2010.
  13. E. Roibas-Millan, A. Alonso-moragon, A.G. Jimenez-Mateos, S. Pindado, "Testing solar panels for small-size satellites: the UPMSAT-2 mission", Meas. Sci. Technol., Vol.28, No.11, pp.5801, 2017. DOI: https://doi.org/10.1088/1361-6501/aa85fc
  14. H.Y. Tada, J.R. Carter, Jr., B.E. Anspaugh, R.G. Downing, "Solar Cell Radiation Handbook Third Edition", NASA and JPL, USA, 1982.
  15. AAC-Clyde. Solutions for a New Age in Space Capability Overview. 2018.
  16. SpectroLab. Ultra Triple Junction (UTJ) Cells. c2018. [cited: 2018 July 16], Available From: http://www.spectrolab.com/DataSheets/cells/2015%20UTJ%20CIC%20Datsheet.pdf. (accessed Mar. 25, 2021)
  17. DHV technology Solar cell products. https://dhvtechnology.com/products/ (accessed Apr. 5, 2021)
  18. EnduroSat products. https://endurosat.com/products/ (accessed Apr. 5, 2021)
  19. Sparkwing Solar cell products. https://sparkwing.space/satellite-solar-panels (accessed Apr. 5, 2021)
  20. ISIS products. https://www.isispace.nl/satellite-solutions/ (accessed Apr. 5, 2021)
  21. M.Bailey, "BIG Power BIG Aperture small satellite", GSFC Planetary CubeSats Symposium 2018, NASA Goddard Space Flight Center, USA, Aug. 16-17, 2018.
  22. Pumpking Solar cell products. https://www.pumpkinspace.com/store/c23/Custom_Solar_Panels.html (accessed Apr. 5, 2021)
  23. S. R. Kurtz et al., Projected performance of threeand four-junction devices using GaAs and GalnP, Proceedings of the 26th IEEE Photovoltaic Specialists Conference, 1997.
  24. Solar Junction Corporation. http://www.sj-solar.com (accessed Apr. 5, 2021)
  25. R.R. King, "Raising the Efficiency Ceiling in Multijunction Solar Cells", Energy Efficient Materials Seminar, UCSB Center, Santa Barbara, USA, Feb. 16, 2011.
  26. M. Bosi and C. Pelosi, "The potential of III-V semiconductors as terrestrial photovoltaic devices", Prog. Photovolt: Res. Appl., Vol.15, No.51, pp.68, 2007.
  27. A. Jasenek et al., "Radiation resistance of Cu(In,Ga)Se2 solar cells under 1-MeV electron irradiation", Thin Solid Films, vol. 387, no. 1, pp. 228-230, 2001. https://doi.org/10.1016/S0040-6090(00)01847-2
  28. L.M. Fraas, L.D. Partain. "Solar cells and their applications", Vol. 236. Wiley, 2010, pp.4.
  29. Brown, C. R., V. R. Whiteside, D. Poplavskyy, K. Hossain, M. Dhoubhadel, I. Sellers, "Flexible Cu(In,Ga)Se2 Solar Cells for Outer Planetary Missions: Investigation Under Low-Intensity Low-Temperature Conditions" IEEE Journal of Photovoltaics, Vol.9, No.55, pp.2-8, 2019.
  30. D. Hoffman, T. Kerslake, A. Hepp, M. Jacobs, D. Ponnusamy, Thin-film photovoltaic solar array parametric assessment, 35th Intersoc. Energy Convers. Eng. Conf. Exhib., American Institute of Aeronautics and Astronautics, Reston, Virigina, 2000. Doi: https://doi.org/10.2514/6.2000-2919
  31. I. Cardinaletti, T. Vangerven, S. Nagels, R. Cornelissen, D. Schreurs, J. Hruby, J. Vodnik, D. Devisscher, J. Kesters, J. D'Haen, A. Franquet, V. Spampinato, T. Conard, W. Maes, W. Deferme, J.V. Manca, "Organic and perovskite solar cells for space applications", Solar Energy Materials and Solar Cells
  32. Toyobo to practicalize power-generating material for organic photovoltaics with world's top-level conversion efficiency under room light. c2020 [cited 2020 March 23] https://www.toyobo-global.com/news/2020/release_117.html (accessed Apr. 5, 2021)