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A NEW ANALYTIC FOURIER-FEYNMAN TRANSFORM W.R.T.

SUBORDINATE BROWNIAN MOTION

Mohamed El Koufi

Abstract. In this paper, we first introduce a new Lp analytic Fourier-Feynman
transform with respect to subordinate Brownian motion (AFFTSB), which extends
the Fourier-Feynman transform in the Wiener space. We next examine several
relationships involving the Lp-AFFTSB, the convolution product, and the gradient
operator for several types of functionals.

1. Introduction and Preliminaries

The study of an L1 analytic Fourier-Feynman transformation on a classical Wiener

space was initiated by Brue in [3]. In [4], Cameron and Storvick introduced an L2

analytic Fourier-Feynman transform on classical Wiener space. In [10], Johnson and

Skoug developed an Lp analytic Fourier-Feynman transform theory for 1 ≤ p ≤ 2

that extended the results in [4] and gave various relationships between the L1 and L2

theories. In [5, 6], Chang, Choi, and Skoug developed a generalized Fourier-Feynman

transform and established several relationships involving convolution product and

first variation on function space. For an elementary introduction to the analytic

Fourier-Feynman transform, see [12] and the references cited therein.

Since the introduction of the Fourier-Feynman transform many researches on

this theory focused on the Wiener measure which is the measure associated to a

Brownian motion (Bt)t≥0 or on the generalized Wiener measure which is the measure

associated to stochastic process (a(t) + Bb(t))t≥0 where a and b are a deterministic

functions, see [6, 7, 8, 11]. In this paper we introduce a new analytic Fourier-

Feynman transform with respect to subordinate Brownian motion which can be

seen as a natural extension of this transform.
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Next, we introduce some notations, some definitions and some basic facts related

to subordinate Brownian motion, which are needed to understand the contents of

the subsequent sections.

Throughout this paper, let C+ and C̃+ denote the set of the complex numbers

with positive real part and the nonzero complex numbers with nonnegative real part.

Given a real number T > 0 and a probability space Ω, we recall that a subordinator

(St)t∈[0,T ] is an increasing Lévy process (see [1, 2]). Such process has stationary and

independent increments, and its trajectories are cadlag (i.e. right-continuous with

left limits). The Laplace transform of a subordinator (St)t∈[0,T ] can be expressed in

the form

(1.1) E[exp (−uSt)] = exp (−tφ(u)) , u ≥ 0,

where φ : [0,∞[7−→ [0,∞[ is called the Laplace exponent of (St)t∈[0,T ]. The function

φ is an example of a Bernstein function with φ(0+) = 0, it is known by the Lvy-

Khintchine formula that there exist a unique nonnegative real number δ and a unique

measure Π on ]0,∞[ with
∫∞
0 (1 ∧ x)Π(dx) < ∞, such that for every u ≥ 0

φ(u) = δu+

∫ ∞

0

(
1− e−ux

)
Π(dx).

By [13, Proposition 3.6, p.25], the Laplace exponent φ of a subordinator admits an

extension which is continuous on C̃+ and analytic on C+. We will still denote by φ

this extension. It should be clear that

E[exp (−zSt)] = exp (−tφ(z)) , z ∈ C̃+.

Let µ be the distribution of (St)t∈[0,T ], which is a probability measure on the path

space

S = {ℓ : [0, T ] → (0,∞) : ℓ increasing and cdlg, ℓ0 = 0},

equipped with the Skorokhod topology B̃(S). Thus, the subordinator (St)t∈[0,T ] can

be realized as a canonical process on
(
S, B̃(S), µ

)
defined by

St(ℓ) = ℓt, (t, ℓ) ∈ [0, T ]× S.

Let (Bt)t≥0 be a standard Brownian motion starting from zero. The Wiener measure

W , that is, the distribution of (Bt)t≥0, is a probability measure on the path space

C0 = {x : [0,∞) → R : x is continuous and, x(0) = 0},

which is endowed with the topology of locally uniform convergence B(C0). Note that
(Bt)t≥0 can be regarded as a process on the classical Wiener space (C0,B(C0),W )
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defined by

Bt(x) = x(t), (t, x) ∈ [0,M ]× C0.

Throughout this article, we assume that (St)t∈[0,T ] is independent of the standard

Brownian motion (Bt)t≥0. The process (BSt)t∈[0,T ] is called a subordinate Brownian

motion. This process is a Lévy process. Since S and B are independent, (BSt)t∈[0,T ]

is the canonical process on the product space (C0 × S,B(C0)⊗ B̃(S),W × µ):

BSt(x, ℓ) = BSt(ℓ)(x) = x(ℓt), (t, x, ℓ) ∈ [0, T ]× C0 × S.

Let Wµ be the distributions of (BSt)t∈[0,T ], then Wµ is a probability measure on the

path space

Ω0 = {x ◦ ℓ : (x, ℓ) ∈ C0 × S},

equipped with the Skorokhod topology B̃(Ω0).

A subset M of Ω0 is said to be scale-invariant measurable [5,16] provided ρM is

B̃(Ω0)-measurable for all ρ > 0, and a scale-invariant measurable set N is said to be

scale-invariant null set provided Wµ(ρN) = 0 for all ρ > 0. A property that holds

except on a scale-invariant null set is said to hold scale-invariant almost everywhere

(SI-a.e.)

Next we give the definitions of the analytic Feynman integral with respect to

subordinate Brownian motion.

Let F be a measurable functional on Ω0 such that for each λ > 0, the function

space integral

EΩ0 [F (λ−1/2·)] ≡ JF (λ) :=

∫
Ω0

F (λ−1/2x ◦ ℓ) Wµ(dx ◦ ℓ),

exists as a finite number. If there exists a function J∗
F (λ) analytic in the half-plane

C+ such that J∗
F (λ) = JF (λ) for all λ > 0 then J∗

F (λ) is defined to be the analytic

function space integral of F over Ω0 with parameter λ, and for λ ∈ C+, we write

Eanwλ
Ω0

[F ] = J∗
F (λ).

For q ∈ R−{0}, if the following limit exists, we call it the analytic Feynman integral

of F with parameter q and we write

(1.2) Eanfq
Ω0

[F ] = lim
λ→−iq

Eanwλ
Ω0

[F ],

where λ approaches −iq through values in C+. Now we are ready to state the

definition of the Lp analytic Fourier-Feynman transform with respect to the measure

Wµ on Ω0.
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Definition 1.1. Let F be a measurable functional on Ω0 such that for all a.e.-Wµ

y ◦ ℓ in Ω0, TλF (y) = Eanwλ
Ω0

[F (·+ y ◦ ℓ)] exists. For q ∈ R− {0} and p ∈ (1, 2], the

Lp-AFFTSB is defined by

(T (p)
q F )(y ◦ ℓ) = l. i.m.

λ→−iq
λ∈C+

(W p′
s )TλF (y ◦ ℓ),

if it exists; that is, for each ϱ > 0,

lim
λ→−iq
λ∈C+

EΩ0

[∣∣∣(TλF )(ϱy ◦ ℓ)− (T (p)
q F )(ϱy ◦ ℓ)

∣∣∣p′] = 0,

where 1/p+ 1/p′ = 1. We define the L1-AFFTSB by the formula (if it exists)

(1.3) (T (1)
q F )(y ◦ ℓ) = lim

λ→−iq
λ∈C+

TλF (y ◦ ℓ),

for SI-a.e. y ◦ ℓ ∈ Ω0.

We note that for p ∈ [1, 2], (T
(p)
q F ) is defined only SI-a.e.

Schilling in [9] has defined a gradient operator with respect to subordinate Brow-

nian motion. For h ∈ C0, the directional derivative (first variation) of a function F

on Ω0 in direction h is defined as

(1.4) DhF (x ◦ ℓ) := lim
ϵ→0

F (x ◦ ℓ+ ϵh ◦ ℓ)− F (x ◦ ℓ)
ϵ

, x ◦ ℓ ∈ Ω0,

whenever the limit exists. Denote by AC([0,∞[;R) the family of all absolutely

continuous functions from [0,∞[ to R. The following Cameron-Martin type space

will be important H(k) (k ∈ R):

(1.5) H(k) :=

{
h ∈ C ∩AC([0,∞[;R) :

∫ ∞

0
|h′(t)|[P(ST ≥ t)]kdt < ∞

}
which becomes a Hilbert space with the inner product

⟨g, h⟩ =
∫ ∞

0
g′(t)h′(t)[P(ST ≥ t)]kdt, g, h ∈ H(k)

An important class of functions on Ω0 for which the above definition of DhF makes

sense are the smooth cylinder functions, denoted by F∞
b , that is, the set of all

functions having the form

(1.6) F (x ◦ ℓ) = f(x ◦ ℓt1 , . . . , x ◦ ℓtn), x ◦ ℓ ∈ Ω0,
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where n ∈ N, f ∈ C∞
b (Rn) and 0 < t1 < . . . < tn < T . Then it is clear that for all

x ◦ ℓ ∈ Ω0, h ∈ H(k)

(1.7) DhF (x ◦ ℓ) =
n∑

j=1

∂jf(x ◦ ℓt1 , . . . , x ◦ ℓtn)h(ℓtj ).

Moreover Schilling in [9] has proved that for F ∈ F∞
b , x ∈ C0, and µ-almost all ℓ ∈ S,

the map h ∈7→ DhF (x ◦ ℓ) is a bounded linear functional on H(k).

Next we state the definition of the convolution product in the subordinate Brow-

nian motion space.

Definition 1.2. Let F and G be measurable functionals on Ω0. We define their

convolution product if it exists by

(1.8) (F ∗̃G)λ(y ◦ ℓ) =


Eanwλ
Ω0

[
F
(
y◦ℓ+·

2

)
G
(
y◦ℓ−·

2

)]
, if λ ∈ C+

Eanwq

Ω0

[
F
(
y◦ℓ+·

2

)
G
(
y◦ℓ−·

2

)]
, if λ = −iq

Remark 1.3. When λ = −iq we denote (F ∗̃G)λ by (F ∗̃G)q.

We next describe two classes of spaces of functionals on Ω0 that we will be working

with in this paper.

Definition 1.4. Let E be the space of functional F that can be expressed in the

form

(1.9) F (x ◦ ℓ) =
∫ T

0
exp (ix ◦ ℓt)α(dt), x ◦ ℓ ∈ Ω0,

where α is a finite Borel measure on [0, T ].

Definition 1.5. We denote by A(n, p) the space of functional F expressed in the

form

(1.10) F (x ◦ ℓ) = f(πt⃗(x ◦ ℓ)) := f(x ◦ ℓt1 , . . . , x ◦ ℓtn), x ◦ ℓ ∈ Ω0,

where 0 < t1 < . . . < tn ≤ T , t⃗ = (t1, . . . , tn), and f ∈ Lp(Rn).

2. An Lp-AFFTSB applied to Functional F ∈ E

In this subsection we establish the existence and give the expression of the Lp-

AFFTSB of functionals F form E . It is clear that F is measurable on Ω0 with

respect to Wµ.

The following lemma gives the expression of the analytic Feynman integral of F .
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Lemma 2.1. Let q ∈ R−{0} and F of the form (1.9). For SI-a.e. y ◦ℓ ∈ Ω0. Then

the analytic Feynman integral Eanfq
Ω0

[F ] exists and has the form

(2.1) Eanfq
Ω0

[F ] =

∫ T

0
exp

(
−tφ(

1

−2iq
)

)
α(dt),

where φ is the Laplace exponent of S.

Proof. Let λ > 0, since B and S are independents and using the fact that Bℓt is

normally distributed with mean 0 and variance ℓt, then we have

EΩ0 [F (λ−1/2·)] =
∫
Ω0

F (λ−1/2x ◦ ℓ)Wµ(dx ◦ ℓ)

=

∫∫
S×C0

F (λ−1/2x ◦ ℓ)W (dx)µ(dℓ)

=

∫
S

∫
C0

∫ T

0
exp(iλ−1/2x(ℓt)) α(dt) W (dx)µ(dℓ)

=

∫ T

0

∫
S

∫
C0

exp(iλ−1/2x(ℓt)) W (dx)µ(dℓ)α(dt)

=

∫ T

0

∫
S

∫
R
exp

(
iλ−1/2u

) 1√
2πℓt

exp

(
− u2

2ℓt

)
duµ(dℓ)α(dt)

=

∫ T

0

∫
S
exp

(
− ℓt
2λ

)
µ(dℓ)α(dt)

=

∫ T

0
ES

[
exp

(
−St

2λ

)]
α(dt)

=

∫ T

0
exp

(
−tφ(

1

2λ
)

)
α(dt).

Since the Laplace exponent φ of a subordinator can be continued analytically on C̃+,

then λ 7→ φ( 1
2λ) is analytic on C+. It is easy to see that λ 7→

∫ 1
0 exp

(
−tφ( 1

2λ)
)
α(dt)

is continuous on C+. Let ∆ be a rectifiable contour in C+, then by the Fubini

theorem and the Cauchy theorem we get that∫
∆

∫ T

0
exp

(
−tφ(

1

2λ
)

)
α(dt) dλ =

∫ T

0

∫
∆
exp

(
−tφ(

1

2λ
)

)
dλ α(dt) = 0.

Using the Morera theorem, we deduce that λ 7→ EΩ0 [F (λ−1/2·)] is analytic on C+.

Hence the analytic function space integral Eanwλ
Ω0

[F ] exists. Thus by the dominated
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convergence theorem and the fact that φ is continuous on C̃+ we obtain that

(2.2) lim
λ→−iq
λ∈C+

∫ T

0
exp

(
−tφ(

1

2λ
)

)
α(dt) =

∫ T

0
exp

(
−tφ(

1

−2iq
)

)
α(dt).

Then (2.1) is proved, which completes the proof. �

Remark 2.2. Notice that the convergence in (2.2) can be obtained in Lp([0, T ], α).

Hence we have

(2.3) lim
λ→−iq
λ∈C+

∥∥∥∥exp(− · φ( 1

2λ
)

)
− exp

(
− · φ( 1

−2iq
)

)∥∥∥∥
Lp([0,T ],α)

= 0.

Lemma 2.3. Let F be of the form (1.9). Then the analytic function space integral

TλF (y ◦ ℓ) exists for all λ ∈ C+ and has the form

(2.4) TλF (y ◦ ℓ) =
∫ T

0
exp (iy(ℓt)) exp

(
−tφ(

1

2λ
)

)
α(dt),

for SI-a.e. y ◦ ℓ ∈ Ω0.

Proof. Let λ > 0 and y ◦ ℓ ∈ Ω0, then by the Fubini theorem

EΩ0 [F (λ−1/2 ·+y ◦ ℓ)] =
∫ T

0
exp (iy(ℓt)) exp

(
−tφ(

1

2λ
)

)
α(dt).

By the same why as in the proof of Lemma 2.1, we obtain that EΩ0 [F (λ−1/2 ·+y ◦ℓ)]
admits an analytic extension on C+ given by (2.4), which completes the proof. �

The following theorem is the main theorem in this section.

Theorem 2.4. Let F be of the form (1.9) and let p ∈ [1, 2]. Then for all q ∈ R\{0},
the Lp-AFFTSB of F exists and is given by

(2.5) (T (p)
q F )(y ◦ ℓ) =

∫ T

0
exp (iy(ℓt)) exp

(
−tφ(

1

−2iq
)

)
α(dt),

for SI-a.e. y ◦ ℓ ∈ Ω0. Furthermore, T
(p)
q F is an element of the class E.

Proof. By Lemma 2.3, the analytic function space integral TλF (y ◦ ℓ)] exists for

SI-a.e. y ◦ ℓ in Ω0 and is given by (2.4). Clearly, by the dominated convergence

theorem, Eq. (2.5) with p = 1 holds for SI-a.e. y ◦ ℓ ∈ Ω0 . In order to establish

(2.5) with p ∈ (1, 2], it suffices to show that for each ϱ > 0

lim
λ→−iq
λ∈C+

EΩ0

[
|TλF (ϱy ◦ ℓ)− T−iqF (ϱy ◦ ℓ)|p

′
]
= 0.



126 Mohamed El Koufi

By Hölder inequality and the Fubini theorem, it follows that for each ϱ > 0

EΩ0

[
|TλF (ϱy ◦ ℓ)− T−iqF (ϱy ◦ ℓ)|p

′
]

=

∫∫
S×C0

∣∣∣∣ ∫ T

0
exp (iϱy(ℓt)) exp

(
−tφ(

1

2λ
)

)
dt

−
∫ T

0
exp (iϱy(ℓt)) exp

(
−tφ(

1

−2iq
)

)
α(dt)

∣∣∣∣p′W (dy)µ(dℓ)

=

∫∫
S×C0

∣∣∣∣ ∫ T

0
exp (iϱy(ℓt))

(
exp

(
−tφ(

1

2λ
)

)

− exp

(
−tφ(

1

−2iq
)

))
α(dt)

∣∣∣∣p′ W (dy)µ(dℓ)

≤
∫∫
S×C0

∥ exp
(
ip′ϱy(ℓt)

)
∥p

′

Lp′ ([0,T ],α)
W (dy)µ(dℓ)

·
∥∥∥∥exp(− · φ( 1

2λ
)

)
− exp

(
− · φ( 1

−2iq
)

)∥∥∥∥p′
Lp([0,T ],α)

=

∥∥∥∥exp(− · φ( 1

2λ
)

)
− exp

(
− · φ( 1

−2iq
)

)∥∥∥∥p′
Lp([0,T ],α)

.

Then by Remark (2.3) we obtain the desired result.

Next let

α̃q(dt) = exp

(
−tφ(

1

−2iq
)

)
α(dt)

Then it is clear that α̃q is a Borel measure, and so T
(p)
q (F ) is in E . This completes

the proof. �

3. Operator Gradient and Convolution Product
applied to Functional F ∈ E

In this section we establish several relationships involving the gradient operator,

the convolution product, and the Lp-AFFTSB for functionals from E .

Theorem 3.1. Let F and G be functionals on Ω0 of the form (1.9), then the L2

AFFTSB of (F ∗̃G)q exists and for SI-a.e. y ◦ ℓ ∈ Ω0 we have

(3.1) (F ∗̃G)q (y ◦ ℓ) =
∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

−8iq

))
α(dt)β(ds)
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Proof. Let λ > 0 and y ◦ ℓ ∈ Ω0, then

EΩ0

[
F

(
y ◦ ℓ+ λ−1/2·√

2

)
G

(
y ◦ ℓ− λ−1/2·√

2

)]

=

∫∫
S×C0

F

(
y ◦ ℓ+ λ−1/2x ◦ σ

2

)
G

(
y ◦ ℓ− λ−1/2x ◦ σ

2

)
Wµ(dx ◦ σ)

=

∫
S

∫
C0

∫ T

0
exp

(
i
y(ℓt) + λ−1/2x(σt)

2

)
α(dt)

·
∫ T

0
exp

(
i
y(ℓs)− λ−1/2x(σs)

2

)
β(ds)W (dx)µ(dσ)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2

)
·
∫
S

∫
C0

exp

(
iλ−1/2

2
(x(σt)− x(σs))

)
W (dx)µ(dσ)α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2

)
·
∫
S

∫
R

1√
2π|σt − σs|

exp

(
iλ−1/2

2
sign(σt − σs)u

)
exp

(
−u2

2|σt − σs|

)
· duµ(dσ)α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2

)∫
S
exp

(
−λ−1|σt − σs|

8

)
µ(dσ)α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2

)
EΩ0

[
exp

(
−|St − Ss|

8λ

)]
α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

8λ

))
α(dt)β(ds).

By the properties of the Laplace exponent φ, it is clear that

λ 7→ exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

8λ

))
is continuous on C̃+, analytic on C+, and R(φ(λ)) > 0 whenever λ ∈ C+. Thus∣∣∣∣exp(iy(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

8λ

))∣∣∣∣ ≤ 1

for all (t, s) ∈ [0, T ]2 and λ ∈ C+. Then λ 7→ (F ∗̃G)λ (y ◦ ℓ) is continuous on C̃+

for SI-a.e y ◦ ℓ ∈ Ω0. Moreover by the Morera theorem and the Cauchy theorem
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we obtain that EΩ0

[
F
(
y◦ℓ+λ−1/2·√

2

)
G
(
y◦ℓ−λ−1/2·√

2

)]
admits an analytic extension on

C+, and for SI-a.e y ◦ ℓ ∈ Ω0

lim
λ→−iq
λ∈C+

(F ∗̃G)λ (y ◦ ℓ) = (F ∗̃G)−iq (y ◦ ℓ).

This completes the proof. �

For (t, s) ∈ [0, T ] and λ ∈ C̃+, let Φ be defined by

(3.2) Φ ((t, s), λ) = exp

(
−|t− s|

(
φ

(
1

−8iq

)
+ φ

(
1

2λ

))
− (t ∧ s)φ

(
2

λ

))
,

then we have the following lemma which will be helpful in the next theorem

Lemma 3.2. Let Φ be defined by (3.2), then for all (t, s) ∈ [0, T ], λ 7→ Φ((t, s), λ)

is continuous on C̃+ and analytic on C+. Moreover we have the following limit

(3.3) lim
λ→−iq
λ∈C+

∥Φ(·, λ)− Φ(·,−iq)∥Lp′ ([0,T ]2,α×β) = 0.

Proof. The continuity and the analyticity of λ 7→ Φ((t, s), λ) are obvious. Thus for

all (t, s) ∈ [0, T ]

(3.4) lim
λ→−iq
λ∈C+

Φ((t, s), λ) = Φ((t, s),−iq),

Note that if z ∈ C with R(z) > 0, then R(φ(z)) > 0. We deduce that for all

(t, s) ∈ [0, T ] and λ ∈ C̃+

(3.5) |Φ((t, s), λ)| ≤ 1,

then the dominated convergence theorem implies (3.3) and the lemma follows. �

Theorem 3.3. Let F and G be functionals on Ω0 of the form (1.9) then the L2

AFFTSB of (F ∗̃G)q exists and for SI-a.e. y ◦ ℓ ∈ Ω0 we have

(3.6) Tq (F ∗̃G)q (y ◦ ℓ) =
∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2

)
Φ((t, s),−iq)α(dt)β(ds),

where Φ is given by (3.2).
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Proof. Let λ > 0 and y ◦ ℓ ∈ Ω0, then

EΩ0

[
(F ∗̃G)q (y ◦ ℓ+ λ−1/2·)

]
=

∫∫
S×C0

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs) + λ−1/2(x(σt) + x(σs))

2
− |t− s|φ

(
1

−8iq

))
· α(dt)β(ds)Wµ(dx ◦ σ)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

−8iq

))
·
∫
S

∫
C0

exp
(
iλ−1/2(x(σt) + x(σs))

)
W (dx)µ(dσ)α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

−8iq

))∫
S

∫
R2

exp
(
iλ−1/2(u+ v)

)
· 1√

2π(σt ∨Ω0 σs − σ ∧ σs)
exp

(
− u2

2(σt ∨ σs − σ ∧ σs)

)
1√

2π4σt ∧ σs

· exp
(
− v2

8σt ∧ σs

)
dudvµ(dσ)α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

−8iq

))
·
∫
S
exp

(
−λ−1(σt + 2σt ∧ σs + σs)

2

)
µ(dσ)α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

−8iq

))
· EΩ0

[
exp

(
−λ−1(St + 2St ∧ Ss + Ss)

2

)]
α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

−8iq

))
EΩ0

[
exp

(
−λ−1(St − Ss)

2

)]
· EΩ0

[
exp

(
−λ−1(2Ss)

2

)]
α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

−8iq

))
exp

(
−|t− s|φ( 1

2λ
)

)
· exp

(
−(t ∧ s)φ(

2

λ
)

)
α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|

(
φ

(
1

−8iq

)
+ φ

(
1

2λ

))
− (t ∧ s)φ

(
2

λ

))
α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2

)
Φ((t, s), λ)α(dt)β(ds).
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Since λ 7→ Φ((t, s), λ) is analytic on C+ and satisfy |Φ((t, s), λ)| ≤ 1 for all (t, s) ∈
[0, T ], then by the dominated convergence theorem, the Cauchy theorem, and the

Morera theorem, we obtain that λ 7→ EΩ0

[
(F ∗̃G)q (y ◦ ℓ+ λ−1/2·)

]
admits an ex-

tension analytic on C+. Thus Tλ (F ∗̃G)q (y ◦ ℓ) is well defined for SI-a.e. y ◦ ℓ ∈ Ω0.

to obtain (3.6) it remains to show that for all ρ > 0

(3.7) lim
λ→−iq
λ∈C+

EΩ0

[∣∣∣Tλ (F ∗̃G)q (ρ·)− Tq (F ∗̃G)q (ρ·)
∣∣∣p′] .

But for ρ > 0 we have by the Hölder inequality and the Fubini theorem

EΩ0

[∣∣∣Tλ (F ∗̃G)q (ρ·)− Tq (F ∗̃G)q (ρ·)
∣∣∣p′]

=

∫∫
S×C0

∣∣∣Tλ (F ∗̃G)q (ρy ◦ ℓ)− Tq (F ∗̃G)q (ρy ◦ ℓ)
∣∣∣p′ Wµ(dy ◦ ℓ)

=

∫∫
S×C0

∣∣∣∣∫ T

0

∫ T

0
exp

(
i
ρy(ℓt) + ρy(ℓs)

2

)
[Φ((t, s), λ)− Φ((t, s),−iq)]α(dt)β(ds)

∣∣∣∣p
′

·Wµ(dy ◦ ℓ)

≤
∫∫
S×C0

∥∥∥∥exp(ipρy(ℓt) + ρy(ℓs)

2

)∥∥∥∥p′
Lp([0,T ]2,α×β)

·Wµ(dy ◦ ℓ) ∥Φ(·, λ)− Φ(·,−iq)∥p
′

Lp′ ([0,T ]2,α×β)

= (α([0, T ])β([0, T ]))p
′/p ∥Φ(·, λ)− Φ(·,−iq)∥p

′

L2([0,T ]2,α×β)
.

Thus by Lemma 3.2 we obtain (3.7), which completes the proof. �

Theorem 3.4. Let F and G be functionals on Ω0 of the form (1.9) then the con-

volution product of T p
q F and T p

q G exists and for SI-a.e. y ◦ ℓ ∈ Ω0 and is given

by

(TqF ∗̃TqG)q (y ◦ ℓ)

(3.8)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

−8iq

)
− (t+ s)φ(

1

−2iq
)

)
α(dt)β(ds)

Proof. Let λ > 0 and y ◦ ℓ ∈ Ω0, then
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EΩ0

[
TqF

(
y ◦ ℓ+ λ−1/2·

2

)
TqG

(
y ◦ ℓ− λ−1/2·

2

)]

=

∫∫
S×C0

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2

)
exp

(
−(t+ s)φ(

1

−2iq
)

)
α(dt)β(ds)

· exp
(
iλ−1/2x(σt)− x(σs)

2

)
Wµ(dx ◦ σ)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2

)
exp

(
−(t+ s)φ(

1

−2iq
)

)
·
∫
S

∫
C0

exp

(
iλ−1/2x(σt)− x(σs)

2

)
W (dx)µ(dσ)α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2

)
exp

(
−(t+ s)φ(

1

−2iq
)

)
·
∫
S

∫
R

1√
2π|σt − σs|

exp

(
iλ−1/2

2
sign(σt − σs)u

)

· exp
(

−u2

2|σt − σs|

)
duµ(dσ)α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2

)
exp

(
−(t+ s)φ(

1

−2iq
)

)
·
∫
S
exp

(
−λ−1|σt − σs|

8

)
µ(dσ)α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2

)
exp

(
−(t+ s)φ(

1

−2iq
)

)
· EΩ0

[
exp

(
−|St − Ss|

8λ

)]
α(dt)β(ds)

=

∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

8λ

)
− (t+ s)φ(

1

−2iq
)

)
α(dt)β(ds).

As in Theorem 3.1 we conclude that λ 7→ (TqF ∗̃TqG)λ (y ◦ ℓ) admits an anaytic

extension on C+ which is continuous on C̃+. Letting λ → −iq in C+ we get (3.8).

This completes the proof. �

The next theorem allows to calculate Dh

[
(F ∗̃G)q

]
. But to do this we have to

put additional assumption on the subordinator (St)t∈[0,T ]. We suppose that

(3.9)

∫ T

0
ES [St] (dα(t) + dβ(t)) < ∞.
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Theorem 3.5. Let F be of the form (1.9) and h ∈ H, then the analytic Feynman

integral of DhF exists and is given by

(3.10) Eanfq
Ω0

[DhF ] =

∫ T

0
ES

[
ih(St) exp

(
− St

2iq

)]
α(dt)

Proof. By the Cauchy Schwartz inequality we have

|h(ℓt) exp (ix(ℓt)) | =
∣∣∣∣∫ ℓt

0
h′(u)du

∣∣∣∣ ≤ ∥h∥H
√
ℓt,

then by assumption we get

EΩ0

[∫ T

0

√
ℓtα(dt)

]
≤
∫ T

0
ES

[√
St

]
α(dt) < ∞.

Thus we have that ∫ T

0

√
ℓtα(dt) < ∞, a.s.

Using the Leibniz’s rule for differentiation under the integral sign we obtain that

DhF (x ◦ ℓ) =
∫ T

0
ih(ℓt) exp (ix(ℓt))α(dt).

Let λ > 0, then by Fubini theorem we obtain

EΩ0

[
F (λ−1/2)·

]
=

∫∫
S×C0

DhF (λ−1/2x ◦ ℓ)Wµ(dx ◦ ℓ)

=

∫ T

0

∫
S

∫
C0

ih(ℓt) exp
(
iλ−1/2x(ℓt)

)
W (dx)µ(dℓ)α(dt)

=

∫ T

0

∫
S

∫
R
ih(ℓt) exp

(
iλ−1/2u

) 1√
2πℓt

exp

(
− u2

2ℓt

)
duµ(dℓ)α(dt)

=

∫ T

0

∫
S
ih(ℓt) exp

(
− ℓt
2λ

)
µ(dℓ)α(dt)

=

∫ T

0
ES

[
ih(St) exp

(
−St

2λ

)]
α(dt).

The Morera theorem with assumption (3.9) entails the existence of Eanwλ
Ω0

[F ], and

by the convergence theorem we obtain (3.10). This completes the proof. �
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Theorem 3.6. Let F and G be functionals on Ω0 of the form (1.9), then the L2

AFFTSB of (F ∗̃G)q exists and for SI-a.e. y ◦ ℓ ∈ Ω0 we have

Dh

[
(F ∗̃G)q

]
(y ◦ ℓ)

(3.11)

=

∫ T

0

∫ T

0
i
h(ℓt) + h(ℓs)

2
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

−8iq

))
α(dt)β(ds)

Proof. By Theorem 3.1 we have that (F ∗̃G)q (y ◦ ℓ) exist for SI-a.e y ◦ ℓ ∈ Ω0, and

is given by

(F ∗̃G)q (y ◦ ℓ) =
∫ T

0

∫ T

0
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

−8iq

))
α(dt)β(ds).

Let h ∈ H and (t, s) ∈ [0, T ]2 then∣∣∣∣ih(ℓt) + h(ℓs)

2
exp

(
i
y(ℓt) + y(ℓs)

2
− |t− s|φ

(
1

−8iq

))∣∣∣∣ ≤ ∥h′∥ℓt + ℓs
2

,

by assumption (3.9) it follows that

ES

[∫ T

0

∫ T

0

ℓt + ℓs
2

α(dt)β(ds)

]
=

β([0, T ])

2
ES

[∫ T

0
Stα(dt)

]
+

α([0, T ])

2
ES

[∫ T

0
Ssβ(ds)

]
< ∞.

Thus we get that for a.e. ℓ ∈ S∫ T

0

∫ T

0

ℓt + ℓs
2

α(dt)β(ds) < ∞.

Using Leibniz’s rule for differentiation under the integral sign we obtain thatDh

[
(F ∗̃G)q

]
exists and is given by (3.11). This completes the proof. �

Theorem 3.7. Let F and G be functionals on Ω0 of the form (1.9). Then the L2

AFFTSB of (F ∗̃G)q exists and for SI-a.e. y ◦ ℓ ∈ Ω0 we have

Dh

[
Tq (F ∗̃G)q

]
(y ◦ ℓ)(3.12)

=

∫ T

0

∫ T

0
i
h(ℓt) + h(ℓs)

2
exp

(
i
y(ℓt) + y(ℓs)

2

)
Φ((t, s), λ) · α(dt)β(ds).

Proof. Let h ∈ H and (t, s) ∈ [0, T ]2 then∣∣∣∣ih(ℓt) + h(ℓs)

2
exp

(
i
y(ℓt) + y(ℓs)

2

)
Φ((t, s),−iq)

∣∣∣∣ ≤ ∥h′∥ℓt + ℓs
2

,
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thus as in the proof of Theorem 3.6, it follows by Leibniz’s rule for differentiation

under the integral sign that Dh

[
Tq (F ∗̃G)q

]
exists and is given by (3.12), which

completes the proof. �

4. The Lp-AFFTSB applied to Functional F ∈ A(p, n)

In this section we show the existence of the Lp−AFFTSB and we give its expres-

sion for functionals F from A(2, n). The integrability with respect the subordinate

Brownian motion is a difficult problem to deal with. We will consider a particular

subordinator, the Lévy subordinator (see [1]) which can be defined as a first hitting

time for one-dimensional standard Brownian motion (Bt)t≥0. More precisely:

S0 = 0, St = inf

{
s > 0; Bs =

t√
2

}
, t > 0.

It is known by [1, Example 1.3.19, p.53] that St has a density given by the Lévy

distribution

(4.1) ϕSt(u) =

(
t

2
√
π

)
u−3/2e−t2/4u, u ≥ 0.

For the subordinator S we consider the function HS(u⃗, λ) defined by

(4.2) HS(u⃗, λ) =

∫
S

n∏
k=1

(
σtk − σtk−1

)−1/2
exp

(
−λ

2

n∑
k=1

(uk − uk−1)
2

σtk − σtk−1

)
µ(dσ),

for u⃗ ∈ Rn and λ ∈ C+ (if it exists). The following lemma will be helpful in the

sequel.

Lemma 4.1. Let (St)t∈[0,T ] be a Lvy subordinator and HS be defined by (4.2), then

for all u⃗ ∈ Rn and λ ∈ C̃+

(i) HS(u⃗, λ) =

(
2√
π

)n n∏
k=1

tk − tk−1

2λ(uk − uk−1)2 + (tk − tk−1)2
,(4.3)

(ii) lim
λ→−iq
λ∈C+

∥HS(·, λ)−HS(·,−iq)∥Lp′ (Rn) = 0.(4.4)

Proof. i) By independence and stationarity of the increments of S and using the

probability density of St, we get

HS(u⃗, λ) =

∫
S

n∏
k=1

(
σtk − σtk−1

)−1/2
exp

(
−λ

2

n∑
k=1

(uk − uk−1)
2

σtk − σtk−1

)
µ(dσ)
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= ES

[
n∏

k=1

(
Stk − Stk−1

)−1/2
exp

(
−λ

2

n∑
k=1

(uk − uk−1)
2

Stk − Stk−1

)]

=

n∏
k=1

ES

[(
Stk − Stk−1

)−1/2
exp

(
−λ

2

n∑
k=1

(uk − uk−1)
2

Stk − Stk−1

)]

=
n∏

k=1

ES

[(
Stk−tk−1

)−1/2
exp

(
−λ

2

n∑
k=1

(uk − uk−1)
2

Stk−tk−1

)]

=
n∏

k=1

∫ ∞

0
s−1/2 exp

(
−λ

2

(uk − uk−1)
2

s

)
tk − tk−1

2
√
π

s−3/2

· exp
(
−(tk − tk−1)

2

4s

)
ds

=

(
2√
π

)n n∏
k=1

tk − tk−1

2λ(uk − uk−1)2 + (tk − tk−1)2
.

Thus (4.3) is proved. It is clear that λ 7→ HS(u⃗, λ) is continuous on C+, then we

have for all u⃗ ∈ Rn

lim
λ→−iq
λ∈C+

HS(u⃗, λ) = HS(u⃗,−iq).

Moreover, for λ ∈ C+ such that |λ+ iq| < |q|/2, we have

|HS(u⃗, λ)| ≤
(

2√
π

)n n∏
k=1

tk − tk−1√
|q|2(uk − uk−1)4 + (tk − tk−1)4

∈ Lp′(Rn).

Therefore by the dominated convergence theorem we get (4.4) and the lemma follows.

�

Remark 4.2. The expression (4.3) of HS shows that for all u⃗ ∈ Rn, λ 7→ HS(u⃗, λ) is

analytic on C̃+, and for all λ ∈ C̃+, u⃗ 7→ HS(u⃗, λ) belongs to Lp′(Rn). Furthermore

we have for all u⃗ ∈ Rn, λ ∈ C̃+

(4.5) |HS(u⃗, λ)| ≤ γ :=

(
2√
π

)n n∏
k=1

(tk − tk−1)
−1.

Lemma 4.3. Let q ∈ R− {0} and F a cylinder functionals of the form (1.10). For

SI-a.e. y ◦ ℓ ∈ Ω0, the analytic function space integral TλF (y ◦ ℓ) exists and has the

form

(4.6) TλF (y ◦ ℓ) = (2π)−n/2 (f ∗HS(·, λ))(πt⃗(y ◦ ℓ)

for all λ ∈ C+, where ∗ denote the usual convolution product.
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Proof. Let λ ∈ C+ and y ◦ ℓ ∈ Ω0, then we have

EΩ0 [F (λ−1/2 ·+y ◦ ℓ)]

=

∫ ∫
S×C0

F (λ−1/2x ◦ σ + y ◦ ℓ)W (dx)µ(dσ)

=

∫ ∫
S×C0

f(λ−1/2πt⃗(x ◦ σt) + πt⃗(y ◦ ℓt))W (dx)µ(dσ)

=

∫
S

∫
C0

f(λ−1/2x(σt1) + y(ℓt1), . . . , λ
−1/2x(σtn) + y(ℓtn))W (dx)µ(dσ)

=

∫
S

∫
Rn

f(λ−1/2u⃗+ πt⃗(y ◦ ℓt))
n∏

k=1

[
2π(σtk − σtk−1

)
]−1/2

· exp

(
−1

2

n∑
k=1

(uk − uk−1)
2

σtk − σtk−1

)
du⃗ µ(dσ)

= (2π)−n/2

∫
Rn

f(u⃗+ πt⃗(y ◦ ℓt))
∫
S

n∏
k=1

(σtk − σtk−1
)−1/2

· exp

(
−λ

2

n∑
k=1

(uk − uk−1)
2

σtk − σtk−1

)
µ(dσ)du⃗

= (2π)−n/2

∫
Rn

f(u⃗+ πt⃗(y ◦ ℓt))HS(u⃗, λ)du⃗

= (2π)−n/2

∫
Rn

f(u⃗+ πt⃗(y ◦ ℓt))HS(−u⃗, λ)du⃗

= (2π)−n/2 (f ∗HS(·, λ))(πt⃗(y ◦ ℓ)

Since u⃗ 7→ HS(u⃗, λ) ∈ Lp′(Rn), and f ∈ Lp(Rn), then f(u⃗ + πt⃗(y ◦ ℓt))HS(u⃗, λ) ∈
L1(Rn). Let (λj) be any sequence in C+ such that λj −→ λ, then there exists j0 ∈ N
such that R(λj) > R(λ)/2 for all j ≥ j0. Thus

|HS(u⃗, λj)| ≤
(

2√
π

)n n∏
k=1

tk − tk−1

R(λ)(uk − uk−1)2 + (tk − tk−1)2
∈ Lp′(Rn),

Hence, using the dominated convergence theorem, it follows that EΩ0 [F (λ−1/2 ·+y ◦
ℓ)] is continuous on C+. It is clear that HS(u⃗, λ) is analytic in λ on C+, then by

the Fubini theorem, the Cauchy theorem, and the Morera theorem we obtain as in

Lemma 2.3 that λ 7→ EΩ0 [F (λ−1/2 · +y ◦ ℓ)] admits an analytic extension on C+.

This completes the proof. �
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Theorem 4.4. Let q ∈ R − {0} and F a cylinder functionals of the form (1.10),

then the Lp-AFFTSB of F exists and has the form

(4.7)

TqF (y ◦ ℓ) = (f ∗HS(·,−iq))(πt⃗(y ◦ ℓ)) := (2π)−n/2

∫
Rn

f(u⃗+πt⃗(y ◦ ℓ))HS(u⃗,−iq)du⃗,

for SI-a.e. y ◦ ℓ ∈ Ω0.

Proof. Lemma 4.3 shows that EΩ0 [F (λ−1/2 · +y ◦ ℓ)] admits an analytic extension

for SI-e.a. y ◦ ℓ ∈ Ω0 given by (4.7), hence to obtain (4.7) it remains to prove that

for all ϱ > 0

lim
λ→−iq
λ∈C+

EΩ0

[
|TλF (ϱy ◦ ℓ)− T−iqF (ϱy ◦ ℓ)|p

′
]
= 0.

Let ϱ > 0 and using the Hölder inequality we obtain that

EΩ0

[
|TλF (ϱy ◦ ℓ)− T−iqF (ϱy ◦ ℓ)|p

′
]

=

∫ ∫
S×C0

|TλF (ϱy ◦ ℓ)− T−iqF (ϱy ◦ ℓ)|p
′
W (dy)µ(dℓ)

=

∫ ∫
S×C0

∣∣∣∣(2π)−n/2

∫
Rn

f(u⃗+ ϱπt⃗(y ◦ ℓt)[HS(u⃗, λ)−HS(u⃗,−iq)]du⃗

∣∣∣∣p′W (dy)µ(dℓ)

≤
∫ ∫

S×C0
(2π)−p′n/2∥f(ϱπt⃗(y ◦ ℓ) + ·⃗)∥p

′

Lp(Rn)W (dy)µ(dℓ)

· ∥HS (⃗·, λ)−HS (⃗·,−iq)∥p
′

Lp′ (Rn)

= (2π)−p′n/2 ∥f∥p
′

Lp(Rn) ∥HS (⃗·, λ)−HS (⃗·,−iq)∥p
′

Lp′ (Rn)
.

Using Lemma 4.1 we finish the proof. �

5. Operator Gradient and Convolution Product
applied to Functional F ∈ A(n, 2)

In this section we will concentrate on the the fucntions of

Proposition 5.1. Let f and g be measurable functions of L2(Rn), and let f ⊗ g be

defined by

(5.1) (f ⊗ g)(u⃗, λ) =

∫
Rn

f(u⃗+ v⃗)g(u⃗− v⃗)HS(v⃗, λ) dv⃗, u⃗ ∈ Rn, λ ∈ C+.

(if it exists). Then

(1) For all u⃗ ∈ Rn, λ ∈ C̃+ (f ⊗ g)(u⃗, λ) exists, and for any u⃗ ∈ Rn, λ 7→
(f ⊗ g)(u⃗, λ) is continuous on C̃+ and analytic on C+.
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(2) For all λ ∈ C̃+, (f ⊗ g)(·, λ) ∈ L2(Rn) and satisfy

|(f ⊗ g)(u⃗, λ)| ≤ γ∥f∥L2(Rn)∥g∥L2(Rn),(5.2)

∥(f ⊗ g)(·, λ)∥L2(Rn) ≤ ∥HS(·, λ)∥L2(Rn)∥f∥L2(Rn)∥g∥L2(Rn)(5.3)

Proof. Since λ 7→ HS(u⃗, λ) is analytic on C̃+, bounded by inequality (4.5), and

f, g ∈ L2(Rn) then (f ⊗ g)(u⃗, λ) exists for all u⃗ ∈ Rn, λ ∈ C̃+ and continuous on

C̃+. Using the Morera theorem, the Cauchy theorem, and the Fubini theorem we

get that λ 7→ (f ⊗ g)(u⃗, λ) is analytic on C+ and continuous on C̃+ for all u⃗ ∈ Rn.

By the Cauchy-Schwartz inequality and taking account of (4.5) we get (5.2).

Since f, g ∈ L2(Rn) and HS is bounded, then by the Cauchy-Schwartz inequality

and the Fubini theorem we obtain∫
R2

|(f ⊗ g)(u⃗, λ)|2 du⃗ ≤
∫
Rn

∫
Rn

f(u⃗+ v⃗)2 dv⃗

∫
Rn

g(u⃗− v⃗)2HS(v⃗, λ)
2 dv⃗ du⃗

= ∥f∥2L2(Rn)

∫
Rn

∫
Rn

g(u⃗− v⃗)2du⃗ HS(v⃗, λ)
2 dv⃗

= ∥f∥2L2(Rn)∥g∥
2
L2(Rn)∥HS (⃗·, λ)∥2L2(Rn).

This completes the proof. �

Theorem 5.2. Let q ∈ R − {0}, let F and G be functionals from A(n, 2). Then

(F ∗̃G)q exists, belongs to L2(Ω0), and has the form

(5.4) (F ∗̃G)q(y ◦ ℓ) = (f ⊗ g)(πt⃗(y ◦ ℓ),−iq),

for all SI-a.e. y ◦ ℓ ∈ Ω0, where Θ is given by (5.1). Moreover we have

(5.5) ∥(F ∗̃G)q∥L2(Ω0) ≤ γ∥f∥L2(Rn)∥g∥L2(Rn)

Proof. Let λ > 0 then

EΩ0

[
F

(
y ◦ ℓ+ λ−1/2·√

2

)
G

(
y ◦ ℓ− λ−1/2·√

2

)]

=

∫ ∫
S×C0

F

(
y ◦ ℓ+ λ−1/2x ◦ σ√

2

)
G

(
y ◦ ℓ− λ−1/2x ◦ σ√

2

)
Wµ(dx ◦ σ)



A NEW ANALYTIC FOURIER-FEYNMAN TRANSFORM 139

=

∫
S

∫
C0

f

(
y ◦ ℓ+ λ−1/2πt⃗(x ◦ σ)√

2

)
g

(
y ◦ ℓ− λ−1/2πt⃗(x ◦ σ)√

2

)
W (dx)µ(dσ)

=

∫
S

∫
Rn

f

(
y ◦ ℓ+ u⃗√

2

)
g

(
y ◦ ℓ− u⃗√

2

) n∏
k=1

[
2π(σtk − σtk−1

)
]−1/2

· exp

(
−λ

2

n∑
k=1

(uk − uk−1)
2

σtk − σtk−1

)
du⃗ µ(dσ)

=

∫
Rn

f

(
y ◦ ℓ+ u⃗√

2

)
g

(
y ◦ ℓ− u⃗√

2

)∫
S

n∏
k=1

[
2π(σtk − σtk−1

)
]−1/2

· exp

(
−λ

2

n∑
k=1

(uk − uk−1)
2

σtk − σtk−1

)
µ(dσ)du⃗

=

∫
Rn

f

(
y ◦ ℓ+ u⃗√

2

)
g

(
y ◦ ℓ− u⃗√

2

)
HS(u⃗, λ)du⃗

= (f ⊗ g)(πt⃗(y ◦ ℓ), λ).

By Lemma 5.1, we obtain the existence of (F ∗̃G)λ(y ◦ ℓ), and

(F ∗̃G)q(y ◦ ℓ) = lim
λ→−iq
λ∈C+

Eanwλ
Ω0

[
F

(
y ◦ ℓ+ ·√

2

)
G

(
y ◦ ℓ− ·√

2

)]
= lim

λ→−iq
λ∈C+

(f ⊗ g)(πt⃗(y ◦ ℓ), λ)

= (f ⊗ g)(πt⃗(y ◦ ℓ),−iq).

Using the inequality (5.2) we have

EΩ0

[
(F ∗̃G)2q

]
=

∫ ∫
S×C0

∣∣(f ⊗ g)(πt⃗(y ◦ ℓ),−iq)
∣∣2Wµ(dy ◦ ℓ)

≤ γ2

∫ ∫
S×C0

∥f∥2L2(Rn)∥g∥
2
L2(Rn)W

µ(dy ◦ ℓ)

= γ2∥f∥2L2(Rn)∥g∥
2
L2(Rn),

thus we get (5.5) and the theorem follows. �

Theorem 5.3. Suppose that q ∈ R − {0}. Let F and G be measurable functionals

of A(n, 2), and h ∈ H. Then the Lp-AFFTSB of (F ∗̃G)q exists and is given by
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(5.6) Tq

[
(F ∗̃G)q

]
(y ◦ ℓ) = ((f ⊗ g)(·,−iq) ∗HS(·,−iq))(πt⃗(y ◦ ℓ),−iq).

for SI-a.e. y ◦ ℓ ∈ Ω0.

Proof. By Theorem 5.2, (F ∗̃G)q exists for SI-a.e. y ◦ ℓ ∈ Ω0 and is equal to (f ⊗
g)(·,−iq), but since (f ⊗ g)(·,−iq) ∈ L2(Rn), then by Theorem 4.4, Lp-AFFTSB of

(F ∗̃G)q exists for SI-a.e. y ◦ ℓ ∈ Ω0 and is given by (5.6). �

Theorem 5.4. Suppose that q ∈ R − {0}. Let F and G be measurable functionals

of A(n, 2). Then the convolution product of TqF and TqG exists and is given by

(5.7) (TqF ∗̃TqG)q (y ◦ ℓ) = ((f ∗HS(·,−iq))⊗ (g ∗HS(·,−iq))) (πt⃗(y ◦ ℓ),−iq),

for SI-a.e. y ◦ ℓ ∈ Ω0.

Proof. According to Theorem 4.4, TqF and TqG exist and are given by f ∗HS(·,−iq)

and g ∗ HS(·,−iq) respectively. Since f, g ∈ L2(Rn) and HS ∈ L1(Rn), then f ∗
HS(·,−iq), g ∗HS(·,−iq) ∈ L2(Rn). Thus by Theorem 5.2 the convolution product

of TqF and TqG exists and is given by (5.7). �

Theorem 5.5. Let F and G be measurable functionals of A(n, 2)∩F∞
b , and h ∈ H.

Then Dh(F ∗̃G)q exists and is given by

(5.8) Dh [(F ∗̃G)q] (y ◦ ℓ) =
n∑

k=1

y(ℓtk) (fk ⊗ g + f ⊗ gk) (πt⃗(y ◦ ℓ,−iq)

for SI-a.e. y ◦ ℓ ∈ Ω0.

Proof. By Theorem 5.2, (F ∗̃G)q exists as an element of L2(Ω0) and is given by (5.4).

Hence by (1.7), Dh [(F ∗̃G)q] (y ◦ ℓ) exists and is given by

Dh [(F ∗̃G)q] (y ◦ ℓ) = Dh

[
(f ⊗ g)(πt⃗(y ◦ ℓ),−iq)

]
=

n∑
k=1

y(ℓtk)(∂k(f ⊗ g)(·,−iq))(πt⃗(y ◦ ℓ),−iq).

Since fk, gk, f, g are bounded and belong to L2(Rn), and HS is bounded, then by

Leibniz’s rule for differentiation under the integral sign we obtain (5.8), which com-

pletes the proof. �

Theorem 5.6. Let F be measurable functional of A(n, 2) ∩ F∞
b , and h ∈ H. Then

Dh [TqF ] exists and is given by
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(5.9) Dh [TqF ] (y ◦ ℓ) =
n∑

k=1

(fk ∗HS(·,−iq))(πt⃗(y ◦ ℓ))

Proof. By Theorem 4.4, the L2-AFFTSB of F exists for SI-a.e. y ◦ ℓ ∈ Ω0 and is

given by (4.7). Furthermore we have fk are bounded and belongs to L2(Rn) and

HS(·,−iq) ∈ L1(Rn). Then by (1.7) we get

Dh [TqF ] (y ◦ ℓ) = Dh

[
f ∗HS(·,−iq)((πt⃗(y ◦ ℓ)))

]
=

n∑
k=1

(fk ∗HS(·,−iq))(πt⃗(y ◦ ℓ)).

This completes the proof. �

Theorem 5.7. Let F and G be measurable functionals of A(n, 2) ∩ F∞
b . Then

(5.10)

Dh

(
Tq

[
(F ∗̃G)q

])
(y◦ℓ) =

n∑
k=1

y(ℓtk)((fk⊗g+f⊗gk)(·,−iq)∗HS(·,−iq))(πt⃗(y◦ℓ),−iq)

Proof. Since the proof here is basically the same as Theorem 5.5 we omit it. �
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