DOI QR코드

DOI QR Code

A Study on the Application Model of AI Convergence Services Using CCTV Video for the Advancement of Retail Marketing

리테일 마케팅 고도화를 위한 CCTV 영상 데이터 기반의 AI 융합 응용 서비스 활용 모델 연구

  • Kim, Jong-Yul (Corporate Research Institute, MIR System. Co., ltd.) ;
  • Kim, Hyuk-Jung (Corporate Research Institute, MIR System. Co., ltd.)
  • 김종율 ((주)미르시스템 기업부설 연구소) ;
  • 김혁중 ((주)미르시스템 기업부설 연구소)
  • Received : 2021.02.18
  • Accepted : 2021.05.20
  • Published : 2021.05.28

Abstract

Recently, the retail industry has been increasingly demanding information technology convergence and utilization to respond to various external environmental threats such as COVID-19 and to be competitive using AI technologies, but there is a very lack of research and application services. This study is a CCTV video data-driven AI application case study, using CCTV image data collection in retail space, object detection and tracking AI model, time series database to store real-time tracked objects and tracking data, heatmap to analyze congestion and interest in retail space, social access zone.We present the orientation and verify its usability in the direction designed through practical implementation.

최근 리테일 산업계에서는 COVID-19 등의 다양한 외부 환경 위협으로부터의 대응과 AI 기술을 활용한 경쟁력을 갖추기 위한 정보기술 융합 및 활용 요구가 증가하고 있으나 리테일 산업에서의 데이터를 활용하기 위한 연구와 응용 서비스의 활용사례가 매우 부족하다. 본 연구는 CCTV 영상 데이터 기반의 AI 활용 응용 서비스 활용 사례연구로 리테일 공간에서의 CCTV 영상 데이터 수집, 객체 탐지 및 추적 AI 모델 활용, 실시간 추적된 객체와 트래킹 데이터를 저장하기 위한 시계열 데이터베이스 활용, 시계열 데이터를 활용한 모니터링, 리테일 공간의 혼잡도와 관심도를 분석하기 위한 히트맵, 리테일 공간에서의 실시간 상황 모니터링, COVID-19와 같은 사회적 위협으로부터의 접촉자 분석과 추적을 위한 사회적 거리 두기 현황, 비인가자의 보안 구역의 접근 모니터링 애플리케이션을 설계하고 이를 실제 구현하여 리테일 공간에서의 CCTV 영상 데이터를 활용한 애플리케이션 설계를 통해 CCTV 영상 데이터 기반의 AI 융합 응용 서비스 활용 모델을 제시하였으며, 실제 구현을 통해 설계된 활용 모델을 검증하였다.

Keywords

References

  1. S. L. Han & J. H. Moon. (2020). Impact of Environmental Changes on Offline Distribution Channel Sales. Journal of Channel and Retailing, 25(4), 31-51. DOI: 10.17657/jcr.2020.10.31.2
  2. J. H. Kim, K. H. Kim & J. M. Lee. (2015). A Study of Characteristics of Multi-cultural Space Composition in Fashion Retail Shop. Journal of Basic Design & Art, 16(3), 145-160. UCI: I410-ECN-0102-2015-600-001793454
  3. A. J. Newman, K. C. Daniel & D. P. Oulton. (2002). New insights into retail space and format planning from customer-tracking data. Journal of Retailing and Consumer Services, 9(5), 253-258. DOI: 10.1016/S0969-6989(02)00010-3
  4. A. J. Park. (2003). A Study on the Tendency of Space Experience appear on Retail Shop. Master dissertation. Konkuk University, Seoul.
  5. J. H. Yoo & Y. J. Lee. (2008). A Study on the Correlation trough Quantitative Analysis of Spatial Configuration and Customer's Behavior in Retail Shop. Journal of Korea Intitute of Spatial Design, 3(1), 59-67. DOI: 10.35216/kisd.2008.3.1.59
  6. Go Eon Bae, Hyun Soo Lee. (2008). Study on the relation between the sales and the analysis of the spatial structure and consumer passageway in store. Design convergence study, 7(2), 89-103.
  7. V. Shankar, J. J. Inman, M. Mantrala, E. Kelley & R. Rizley. (2011). Innovations in shopper marketing: current insights and future research issues. Journal of Retailing, 87, 29-42. DOI: 10.1016/j.jretai.2011.04.007
  8. J. H. Kim. (2014). The Shopping Experience Values at Department Stores and Their Effects on the Brand Asset and the Store Loyalty. Journal of Digital Convergence, 12(2), 151-162. DOI : 10.14400/JDC.2014.12.2.151
  9. M. Blazquez. (2014). Fashion shopping in multichannel retail: The role of technology in enhancing the customer experience. International Journal of Electronic Commerce, 18(4), 97-116. DOI: 10.2753/JEC1086-4415180404
  10. J. H. Kim & J. H. Song. (2019). Exploring Key Factors Affecting the Success of High-Tech Retailers:13 Retail Cases Adopting AR or VR or AI or Automated Store. The Academy of Customer Satisfaction Management, 21(3), 91-122. DOI: 10.34183/KCSMA.21.3.5
  11. K. Willems, A. Smolders, M. Brengman, K. Luyten & J. Schoning. (2017). The path-to-purchase is paved with digital opportunities: An inventory of shopper-oriented retail technologies. Technological Forecasting and Social Change, 124, 228-242. DOI: 10.1016/j.techfore.2016.10.066
  12. Y. A. Kwak & Y. S. CHO. (2019). Unmanned Store, Retailtech and Digital Divide in South Korea. The Journal of Distribution Science, 17(9), 47-56. DOI: 10.15722/jds.17.09.201909.47
  13. Z. Wang, L. Zheng, Y. Liu & S. Wang. (2019). Towards real-time multi-object tracking. arXiv preprint arXiv:1909.12605, 2(3), 4. DOI: 10.1007/978-3-030-58621-8_7
  14. Q. Zhao, T. Sheng, Y. Wang, Z. Tang, Y. Chen, L. Cai & H. Ling. (2019). M2det: A single-shot object detector based on multi-level feature pyramid network. In Proceedings of the AAAI conference on artificial intelligence, 33(1), 9259-9266. arXiv:1811.04533
  15. M. Sandler, A. Howard, M. Zhu, A. Zhmoginov & L. C. Chen. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, 4510-4520. DOI: 10.1109/CVPR.2018.00474.