References
- MOLIT (2019). A Study on the Actual Condition of travel convenience for the mobility handicapped, Sejong.
- W. H. Kim, S. H. Lee & S. H. Kim. (2008). A Study on Travel Behavior of the Mobility Handicapped and Custom-made Transit Information System. Seoul Studies, 9(2), 105-119.
- M. K. Jang, W. T. Lim, K. S. Kim & M. K. Moon. (2013). Customized Navigation System for Walking Safety of the Transportation Vulnerable. Journal of the Korean Institute of Next Generation Computing, 9(5), 17-26.
- B. M. Park & E. J. Shim. (2013). Barrier Free Design Methods applied in Passenger Terminals based on Characteristics of Transportation Poor & Barrier Free Elements - Focused on the Gunsan International*Coastal Passenger Boat Terminal -. Journal of the Korean Institute of Interior Design, 22(5), 344-356. DOI : 10.14774/JKIID.2013.22.5.344
- S. W. Chung & J. H. Rho. (2017). Case Study of Barrier Free Design for Transportation Vulnerable: Focusing on Transfer Station Complex in Seoul Station. Journal of the Korea Academia-Industrial cooperation Society. 18(3), 333-344 DOI : 10.5762/KAIS.2017.18.3.333
- S. S. Heo, Y. K. Choi & Y. H. Park. (2018). Design and Implementation of Low-Floor Bus Reservation System for the Transportation Weak. Journal of the Korea Industrial Information Systems Research, 23(6), 39-46. DOI : 10.9723/jksiis..2018.23.6.039
- K. W. Kim, D. S. Yun & J. J. Kim. (2020). Travel Demand Analysis of Special Transportation Systems for the Transportation Vulnerable using Big Data: A Case Study of Daegu Metropolitan City. Journal of Daegu Gyeongbuk Studies. 19(2), 43-61. https://doi.org/10.23029/JDGS.2020.19.2.43
- K. W. Kim, B. M. Koo, J. H. Si & H. H. Jeon. (2020). Location Analysis of Charging Stations for the Disabled Person using Big Data. Korean Society of Transportation. 17(5), 7-16.
- J. M. Ko & D. H. Nam. (2011). Development of Hybrid Filtering Recommendation System using Context-Information in Mobile Environments. The Journal of The Korea Institute of Intelligent Transport Systems, 10(3), 95-100.
- D. S. Kim. (2016). User-Customized restaurant recommender system based on Collective Intelligence. Master's thesis. Kangwon National University, Gangwonl.
- B. I. Ahn, K. I. Jung & H. L. Choi. (2017). Mobile Context Based User Behavior Pattern Inference and Restaurant Recommendation Model. Journal of Digital Contents Society, 18(3), 535-542. DOI : 10.9728/dcs.2017.18.3.535
- H. S. Choi, Q. Peng & W. S. Rhee. (2020). Design and Implementation of the Machine Learning-based Restaurant Recommendation System. Journal of Digital Contents Society, 21(2), 259-268. DOI : 10.9728/dcs.2020.21.2.259
- G. Geetha, M. Safa, C. Fancy & D. Saranya. (2018). A hybrid approach using collaborative filtering and content based filtering for recommender system. Journal of Physics Conference Series, 1000(1), 012101. DOI : 10.1088/1742-6596/1000/1/012101
- E. Y. Bae & S. J. Yu. (2018). Keyword-based Recommender System Dataset Construction and Analysis. Journal of KIIT, 16(6), 91-99. DOI : 0.14801/jkiit.2018.16
- R. V. Meteren & M. V. Someren. (2000). Using content-based filtering for recommendation. Proceedings of the Machine Learning in the New Information Age: MLnet/ECML2000 Workshop, 30, 47-56.
- B. Sarwar, G. Karypis, J. Konstan & J. Riedl. (2001). Item-based collaborative filtering recommendation algorithms. WWW '01: Proceedings of the 10th international conference on World Wide Web, 285-295. DOI : 10.1145/371920.372071
- R. Burke. (2002). Hybrid recommender systems : survey and experiments. User Modeling and User-Adapted Interaction, 12, 331-370. DOI : 10.1023/A:1021240730564
- J. H. Kim, B. H. Ahn & D. Y. Jeong (2012). A Recommender System using Mixed Filtering for Health Products. The Journal of Internet Electronic Commerce Research, 12(2), 109-124.
- J. E. Son, S. B. Kim, H. J. Kim & S. Z. Cho. (2015). Review and Analysis of Recommender Systems. Journal of the Korean, 41(2), 185-208. DOI : 10.7232/JKIIE.2015.41.2.185
- K. W. Kim, S. H. Son, M. Y. Yang & S. H. Lee. (2020). Frequency of Special Transportation Estimation Model Using Deep Learning(Nadri Call). Korean Society of Transportation, 17(2), 43-51.