DOI QR코드

DOI QR Code

Implementation of a Personalized Restaurant Recommendation System for The Mobility Handicapped

교통약자를 위한 맞춤형 식당 추천시스템 구현

  • Lee, Jin-Ju (School of Business, Yeungnam University) ;
  • Park, So-Yeon (School of Information and Communication Engineering, Yeungnam University) ;
  • Kim, Seo-Yun (School of Statistics, Yeungnam University) ;
  • Lee, Jeong-Eun (Department of Statistics, Kyungpook University) ;
  • Kim, Keun-Wook (Big Data Center, Daegu Digital Industry Promotion Agency)
  • 이진주 (영남대학교 경영학과) ;
  • 박소연 (영남대학교 정보통신공학과) ;
  • 김서윤 (영남대학교 통계학과) ;
  • 이정은 (경북대학교 통계학과) ;
  • 김건욱 (대구디지털산업진흥원 빅데이터활용센터)
  • Received : 2021.02.10
  • Accepted : 2021.05.20
  • Published : 2021.05.28

Abstract

The mobility handicapped are representative socially vulnerable people who account for a high percentage of our society. Due to the recent development of technology, personalized welfare technologies for the socially vulnerable are being studied, but it is relatively insufficient compared to the general people. In this study, we intend to implement a personalized restaurant recommendation system for the mobility handicapped. To this end, a hybrid recommendation system was implemented by combining the data of special transportation boarding and alighting history (7,153 cases) and information of Daegu Food restaurants (955 cases). In order to evaluate the effectiveness of the implemented recommendation system, we conducted performance comparisons with existing recommendation systems by prediction error rate and recommendation coverage. As a result of the analysis, the performance was higher than that of the existing recommendation system, and the possibility of a personalized restaurant recommendation system for the mobility handicapped was confirmed. In addition, we also confirmed the correlation in which similar restaurants are recommended in some types of the mobility handicapped. As a result of this study, it is judged that it will contribute to the use of restaurants with high satisfaction for the mobility handicapped, and the limitations of the study are also presented.

교통약자는 우리 사회의 높은 비율을 차지하고 있는 대표적인 사회 취약계층이다. 최근 기술의 발달로 사회취약 계층을 위한 맞춤형 복지 기술이 연구되고 있으나, 일반인들과 비교하면 상대적으로 부족한 실정이다. 이에 본 연구에서는 교통약자를 위한 맞춤형 식당 추천시스템을 구현하고자 한다. 이를 위해 특별교통수단 승하차 이력(7,153건), 대구 푸드 식당 상세정보(955건)의 자료를 결합하여 하이브리드 추천시스템을 구현하였다. 구현된 추천시스템의 유효성 평가를 위해 예측 오차율, 추천 커버리지로 기존 추천시스템들과 성능 비교를 수행하여 유효성을 검증하였다. 분석 결과 기존 추천시스템보다 높은 성능으로 나타났으며, 교통약자를 위한 맞춤형 식당 추천시스템의 가능성을 확인하였다. 또한 일부 교통약자 유형에서 유사한 식당이 추천되는 상관성을 확인하였다. 본 연구결과는 교통약자들의 만족도 높은 식당 이용에 기여할 것으로 판단되며, 연구의 한계점 또한 제시하였다.

Keywords

References

  1. MOLIT (2019). A Study on the Actual Condition of travel convenience for the mobility handicapped, Sejong.
  2. W. H. Kim, S. H. Lee & S. H. Kim. (2008). A Study on Travel Behavior of the Mobility Handicapped and Custom-made Transit Information System. Seoul Studies, 9(2), 105-119.
  3. M. K. Jang, W. T. Lim, K. S. Kim & M. K. Moon. (2013). Customized Navigation System for Walking Safety of the Transportation Vulnerable. Journal of the Korean Institute of Next Generation Computing, 9(5), 17-26.
  4. B. M. Park & E. J. Shim. (2013). Barrier Free Design Methods applied in Passenger Terminals based on Characteristics of Transportation Poor & Barrier Free Elements - Focused on the Gunsan International*Coastal Passenger Boat Terminal -. Journal of the Korean Institute of Interior Design, 22(5), 344-356. DOI : 10.14774/JKIID.2013.22.5.344
  5. S. W. Chung & J. H. Rho. (2017). Case Study of Barrier Free Design for Transportation Vulnerable: Focusing on Transfer Station Complex in Seoul Station. Journal of the Korea Academia-Industrial cooperation Society. 18(3), 333-344 DOI : 10.5762/KAIS.2017.18.3.333
  6. S. S. Heo, Y. K. Choi & Y. H. Park. (2018). Design and Implementation of Low-Floor Bus Reservation System for the Transportation Weak. Journal of the Korea Industrial Information Systems Research, 23(6), 39-46. DOI : 10.9723/jksiis..2018.23.6.039
  7. K. W. Kim, D. S. Yun & J. J. Kim. (2020). Travel Demand Analysis of Special Transportation Systems for the Transportation Vulnerable using Big Data: A Case Study of Daegu Metropolitan City. Journal of Daegu Gyeongbuk Studies. 19(2), 43-61. https://doi.org/10.23029/JDGS.2020.19.2.43
  8. K. W. Kim, B. M. Koo, J. H. Si & H. H. Jeon. (2020). Location Analysis of Charging Stations for the Disabled Person using Big Data. Korean Society of Transportation. 17(5), 7-16.
  9. J. M. Ko & D. H. Nam. (2011). Development of Hybrid Filtering Recommendation System using Context-Information in Mobile Environments. The Journal of The Korea Institute of Intelligent Transport Systems, 10(3), 95-100.
  10. D. S. Kim. (2016). User-Customized restaurant recommender system based on Collective Intelligence. Master's thesis. Kangwon National University, Gangwonl.
  11. B. I. Ahn, K. I. Jung & H. L. Choi. (2017). Mobile Context Based User Behavior Pattern Inference and Restaurant Recommendation Model. Journal of Digital Contents Society, 18(3), 535-542. DOI : 10.9728/dcs.2017.18.3.535
  12. H. S. Choi, Q. Peng & W. S. Rhee. (2020). Design and Implementation of the Machine Learning-based Restaurant Recommendation System. Journal of Digital Contents Society, 21(2), 259-268. DOI : 10.9728/dcs.2020.21.2.259
  13. G. Geetha, M. Safa, C. Fancy & D. Saranya. (2018). A hybrid approach using collaborative filtering and content based filtering for recommender system. Journal of Physics Conference Series, 1000(1), 012101. DOI : 10.1088/1742-6596/1000/1/012101
  14. E. Y. Bae & S. J. Yu. (2018). Keyword-based Recommender System Dataset Construction and Analysis. Journal of KIIT, 16(6), 91-99. DOI : 0.14801/jkiit.2018.16
  15. R. V. Meteren & M. V. Someren. (2000). Using content-based filtering for recommendation. Proceedings of the Machine Learning in the New Information Age: MLnet/ECML2000 Workshop, 30, 47-56.
  16. B. Sarwar, G. Karypis, J. Konstan & J. Riedl. (2001). Item-based collaborative filtering recommendation algorithms. WWW '01: Proceedings of the 10th international conference on World Wide Web, 285-295. DOI : 10.1145/371920.372071
  17. R. Burke. (2002). Hybrid recommender systems : survey and experiments. User Modeling and User-Adapted Interaction, 12, 331-370. DOI : 10.1023/A:1021240730564
  18. J. H. Kim, B. H. Ahn & D. Y. Jeong (2012). A Recommender System using Mixed Filtering for Health Products. The Journal of Internet Electronic Commerce Research, 12(2), 109-124.
  19. J. E. Son, S. B. Kim, H. J. Kim & S. Z. Cho. (2015). Review and Analysis of Recommender Systems. Journal of the Korean, 41(2), 185-208. DOI : 10.7232/JKIIE.2015.41.2.185
  20. K. W. Kim, S. H. Son, M. Y. Yang & S. H. Lee. (2020). Frequency of Special Transportation Estimation Model Using Deep Learning(Nadri Call). Korean Society of Transportation, 17(2), 43-51.