DOI QR코드

DOI QR Code

The effect of swimming exercise on inflammation in ovariectomized mice with non-alcoholic fatty liver

비알코올성 지방간을 가진 난소절제 쥐에서 염증에 대한 수영운동의 영향

  • Jeong, Sun-Hyo (Division of Biomedical Engineering & Health, Science Management, Mokwon University)
  • 정선효 (목원대학교 테크노과학대학 의생명.보건학부)
  • Received : 2021.03.11
  • Accepted : 2021.04.26
  • Published : 2021.04.30

Abstract

This study investigated the effect of swimming exercise on inflammation in non-alcoholic fatty liver using animal models of postmenopausal obese women. Experimental animals were divided into a sham-operate + non-swimming trained group (S/N), an ovariectomize + non-swimming trained group (O/N) and an ovariectomize + swimming trained group (O/S), and were bred while eating a high fat diet for 8 weeks. Fat accumulation in liver tissue, liver weight, and serum AST and ALT increased in O/N compared to S/N, but decreased in O/S compared to O/N. Compared to S/N, O/N decreased the gene expression of IκBα in liver tissue and increased gene expression of MCP-1, IL-6, and TNF-α. But compared to O/N, O/S increased the gene expression of IκBα in liver tissue and decreased gene expression of MCP-1, IL-6, and TNF-α. In conclusion, this study suggested that swimming exercise was effective in improving physical health by improving inflammation in non-alcoholic fatty liver in obese mice induced obesity by high fat diet after ovariectomy.

본 연구는 폐경 후 비만 여성의 동물모델을 이용하여 수영운동이 비알코올성 지방간에서 염증에 미치는 영향을 조사하였다. 실험동물은 수영운동을 하지 않은 모의수술군(S/N), 수영운동을 하지 않은 난소절제 수술군(O/N) 및 수영운동을 실시한 난소절제 수술군(O/S)으로 구분되어 8주 동안 고지방식이 사료를 섭취하면서 사육되었다. 간 조직의 지방축적, 간 무게 및 혈청 속 AST와 ALT는 S/N에 비해 O/N에서 증가하였으나, O/N에 비해 O/S에서는 감소하였다. S/N에 비해 O/N는 간 조직에서의 IκBα의 유전자 발현이 감소하였고 MCP-1, IL-6 및 TNF-α의 유전자 발현은 증가하였다. 그러나 O/N에 비해 O/S는 간 조직에서의 IκBα이 증가하였고 MCP-1, IL-6 및 TNF-α의 유전자 발현은 감소하였다. 결론적으로 본 연구는 난소절제 후 고지방식이의 섭취로 비만이 유도된 비만 쥐에서 수영운동이 비만으로 유도된 비알코올성 지방간에서 염증을 개선함으로써 건강증진에 효과적임을 제시하였다.

Keywords

References

  1. S. Mumusoglu, B. O. Yildiz, "Metabolic Syndrome During Menopause", Current Vascular Pharmacology, Vol.17, No.6 pp. 595-603, (2019). https://doi.org/10.2174/1570161116666180904094149
  2. A. R. Saltiel, J. M. Olefsky, "Inflammatory mechanisms linking obesity and metabolic disease", The Journal of Clinical Investigation, Vol.127, No.1 pp. 1-4, (2017). https://doi.org/10.1172/JCI92035
  3. M. E. Rinella, "Nonalcoholic fatty liver disease: a systematic review", Journal of the American Medical Association, Vol.313, No.22 pp. 2263-2273, (2015). https://doi.org/10.1001/jama.2015.5370
  4. S. Singh, A. M. Allen, Z. Wang, L. J. Prokop, M. H. Murad, R. Loomba, "Fibrosis progression in nonalcoholic fatty liver vs nonalcoholic steatohepatitis: a systematic review and meta-analysis of paired-biopsy studies", Clinical Gastroenterology and Hepatology, Vol.13, No.4 pp. 643-654, (2015). https://doi.org/10.1016/j.cgh.2014.04.014
  5. Z. M. Younossi, A. B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, M. Wymer, "Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes", Hepatology, Vol.64, No,1 pp. 73-84, (2016). https://doi.org/10.1002/hep.28431
  6. N. Chalasani, Z. Younossi, J. E. Lavine, M. Charlton, K. Cusi, M. Rinella, S. A. Harrison, E. M. Brunt, A. J. Sanyal, "The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases", Hepatology, Vol.67, No.1 pp. 328-357, (2018). https://doi.org/10.1002/hep.29367
  7. E. M. Koehler, J. N. Schouten, B. E. Hansen, F. J. van Rooij, A. Hofman, B. H. Stricker, H. L. Janssen, "Prevalence and risk factors of non-alcoholic fatty liver disease in the elderly: results from the Rotterdam study", Journal of Hepatology, Vol.57, No.6 pp. 1305-1311, (2012). https://doi.org/10.1016/j.jhep.2012.07.028
  8. G. Kim, S. E. Lee, Y. B. Lee, J. E. Jun, J. Ahn, J. C. Bae, S. M. Jin, K. Y. Hur, J. H. Jee, M. K. Lee, J. H. Kim, "Relationship Between Relative Skeletal Muscle Mass and Nonalcoholic Fatty Liver Disease: A 7-Year Longitudinal Study", Hepatology. Vol.68, No.5 pp. 1755-1768, (2018). https://doi.org/10.1002/hep.30049
  9. A. M. Setroame, P. Kormla Affrim, A. Abaka-Yawson, P. K. Kwadzokpui, F. Eyram Adrah, H. Bless, L. Mohammed, A. T. Bawah, H. W. Alidu, "Prevalence of Metabolic Syndrome and Nonalcoholic Fatty Liver Disease among Premenopausal and Postmenopausal Women in Ho Municipality: A Cross-Sectional Study", BioMed Research International, Vol.2020, pp. 2168381, (2020)
  10. R. Marechal, A. Ghachem, D. Prud'homme, R. Rabasa-Lhoret, I. J. Dionne, M. Brochu, "Physical activity energy expenditure and fat-free mass: relationship with metabolic syndrome in overweight or obese postmenopausal women", Applied Physiology, Nutrition, and Metabolism, Vol.46, No.4 pp. 389-396, (2021). https://doi.org/10.1139/apnm-2020-0607
  11. D. T. Villareal, L. Aguirre, A. B. Gurney, D. L. Waters, D. R. Sinacore, E. Colombo, R. Armamento-Villareal, C. Qualls, "Aerobic or Resistance Exercise, or Both, in Dieting Obese Older Adults", The New England Journal of Medicine, Vol.376, No.20 pp. 1943-1955, (2017). https://doi.org/10.1056/NEJMoa1616338
  12. C. M. Dieli-Conwright, K. S. Courneya, W. Demark-Wahnefried, N. Sami, K. Lee, T. A. Buchanan, D. V. Spicer, D. Tripathy, L. Bernstein, J. E. Mortimer, "Effects of Aerobic and Resistance Exercise on Metabolic Syndrome, Sarcopenic Obesity, and Circulating Biomarkers in Overweight or Obese Survivors of Breast Cancer: A Randomized Controlled Trial", Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, Vol.36, No.9 pp. 875-883, (2018). https://doi.org/10.1200/JCO.2017.75.7526
  13. M. A. Wewege, J. M. Thom, K. A. Rye, B. J. Parmenter, "Aerobic, resistance or combined training: A systematic review and meta-analysis of exercise to reduce cardiovascular risk in adults with metabolic syndrome", Atherosclerosis, Vol.274, pp. 162-171, (2018). https://doi.org/10.1016/j.atherosclerosis.2018.05.002
  14. A. R. Konopka, M. P. Harber, "Skeletal muscle hypertrophy after aerobic exercise training", Exercise and Sport Sciences Reviews, Vol.42, No.2 pp. 53-61, (2014).
  15. R. S. Rector, J. P. Thyfault, R. T. Morris, M. J. Laye, S. J. Borengasser, F. W. Booth, J. A. Ibdah, "Daily exercise increases hepatic fatty acid oxidation and prevents steatosis in Otsuka Long-Evans Tokushima Fatty rats", American Journal of Physiology. Gastrointestinal and Liver Physiology, Vol.294, No.3 pp. G619-G626, (2008). https://doi.org/10.1152/ajpgi.00428.2007
  16. S. Jeong, M. Yoon, "Swimming's Prevention of Ovariectomy-induced Obesity through Activation of Skeletal-muscle PPARα" International Journal of Sport Nutrition and Exercise Metabolism, Vol.22, No.1 pp. 1-10, (2012). https://doi.org/10.1123/ijsnem.22.1.1
  17. Y. S. Kang, J. C. Kim, "The Effect of Temperature of Swimming Exercise on Mitochondria Biogenesis and Fusion in the Skeletal Muscle of Obese-induced Rats", The Korea Journal of Sports Science, Vol.24, No.4 pp. 1291-1302, (2015).
  18. S. Jeong, "Effect of swimming exercise on anti-angiogenesis of white adipose tissue in high-fat diet-fed female ovariectomized mice", Journal of the Korean Applied Science and Technology, Vol.37, No.3 pp. 385-397, (2020). https://doi.org/10.12925/JKOCS.2020.37.3.385
  19. G. Tuuri, M. Loftin, J. Oescher, "Association of Swim Distance and Age with Body Composition in Adult Female Swimmers", Medicine and Science in Sports and Exercise, Vol.34, No.12 pp. 2110-2114, (2002). https://doi.org/10.1097/00005768-200212000-00037
  20. S. Schenk, M. Saberi, J. M. Olefsky, "Insulin sensitivity: modulation by nutrients and inflammation", The Journal of Clinical Investigation, Vo.118, No.9 pp. 2992-3002, (2008). https://doi.org/10.1172/JCI34260
  21. C. N. Lumeng, A. R. Saltiel, "Inflammatory links betweenobesity and metabolic disease," Journal of Clinical Investigation, Vol.121, No.6 pp. 2111-2117, (2011). https://doi.org/10.1172/JCI57132
  22. G. Li, J. Y. Liu, H. X. Zhang, Q. Li, S. W. Zhang, "Exercise training attenuates sympathetic activation and oxidative stress in diet-induced obesity", Physiological research / Academia Scientiarum Bohemoslovaca, Vol.64, No.3 pp. 355-367, (2015).
  23. N. Kawanishi, H. Yano, Y. Yokogawa, K. Suzuki, "Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice", Exercise Immunology Review, Vol.16, pp. 105-118, (2010).
  24. K. E. Bornfeldt, I. Tabas, "Insulin resistance, hyperglycemia, and atherosclerosis", Cell Metabolism, Vol.14, No.5, pp. 575-585, (2011). https://doi.org/10.1016/j.cmet.2011.07.015
  25. C. Peng, A. G. Stewart, O. L. Woodman, R. H. Ritchie, C. X. Qin, "Non-Alcoholic Steatohepatitis: A Review of Its Mechanism, Models and Medical Treatments", Frontiers in Pharmacology, Vol.11, pp. 603926, (2020). https://doi.org/10.3389/fphar.2020.603926
  26. V. T. Samuel, G. I. Shulman, "Nonalcoholic Fatty Liver Disease as a Nexus of Metabolic and Hepatic Diseases", Cell Metabolism, Vol.27, No.1 pp. 22-41, (2018). https://doi.org/10.1016/j.cmet.2017.08.002
  27. K. A. Kim, "Understanding and application of liver function tests", The Korean Journal of Medicine. Vol.76, No.2 pp. 163-168, (2009). https://doi.org/10.3946/kjme.2009.21.2.163
  28. D. Fu, H. Cui, Y. Zhang, "Lack of ClC-2 Alleviates High Fat Diet-Induced Insulin Resistance and Non-Alcoholic Fatty Liver Disease", Cellular Physiology and Biochemistry, Vol.45, No.6 pp. 2187-2198, (2018). https://doi.org/10.1159/000488164
  29. J. Yuan, Q. Shi, J. Chen, J. Lu, L. Wang, M. Qiu, J. Liu, "Effects of 23-epi-26-deoxyactein on adipogenesis in 3T3-L1 preadipocytes and diet-induced obesity in C57BL/6 mice", Phytomedicine. Vol.76, pp. 153264, (2020). https://doi.org/10.1016/j.phymed.2020.153264
  30. T. Emberts, J. Porcari, S. Dobers-Tein, J. Steffen, C. Foster, "Exercise intensity and energy expenditure of a tabata workout", Journal of Sports Science and Medicine, Vol.12, No.3 pp. 612-613, (2013).
  31. S. M. Yoon, Y. H. Seo, "Effect of TABATA Exercise on Improvement of Liver Function and Metabolic Syndrome Risk Factors in Middle-Aged Women With Borderline Obesity", The Korean Journal of Growth and Development, Vol.27, No.2 pp. 115-119, (2019). https://doi.org/10.34284/KJGD.2019.05.27.2.115
  32. M. A. Linden, J. A. Fletcher, E. M. Morris, G. M. Meers, M. L. Kearney, J. M. Crissey, M. H. Laughlin, F. W. Booth, J. R. Sowers, J. A. Ibdah, J. P. Thyfault, R. S. Rector, "Combining metformin and aerobic exercise training in the treatment of type 2 diabetes and NAFLD in OLETF rats", American Journal of Physiology. Endocrinology and Metabolism, Vol.306, No.3 pp. E300-E310, (2014). https://doi.org/10.1152/ajpendo.00427.2013
  33. A. Schultz, L. S. Mendonca, M. B. Aguila, C. A. Mandarim-de-Lacerda, "Swimming training beneficial effects in a mice model of nonalcoholic fatty liver disease", Experimental and Toxicologic Pathology, Vol.64, No.4 pp. 273-282, (2012). https://doi.org/10.1016/j.etp.2010.08.019
  34. S. Petta, C. Muratore, A. Craxi, "Nonalcoholic fatty liver disease pathogenesis: the present and the future", Digestive and liver disease, Vol.41, No.9 pp. 615-625, (2009). https://doi.org/10.1016/j.dld.2009.01.004
  35. P. Farzanegi, A. Dana, Z. Ebrahimpoor, M. Asadi, M. A. Azarbayjani, "Mechanisms of beneficial effects of exercise training on non-alcoholicfattyliverdisease (NAFLD): Roles of oxidative stress and inflammation", European journal of sport science, Vol.19, Np.7 pp. 994-1003, (2019). https://doi.org/10.1080/17461391.2019.1571114
  36. J. Cho, S. Kim, S. Lee, H. Kang, "Effect of Training Intensity on Nonalcoholic Fatty Liver Disease", Medicine and Science in Sports and Exercise, Vol.47, No.8 pp. 1624-1634, (2015). https://doi.org/10.1249/MSS.0000000000000595
  37. M. Turgut, V. Cinar, R. Pala, M. Tuzcu, C. Orhan, H. Telceken, N. Sahin, P. B. D. Deeh, J. R. Komorowski, K. Sahin, "Biotin and chromium histidinate improve glucose metabolism and proteins expression levels of IRS-1, PPAR-γ, and NF-κB in exercise-trained rats", Journal of the International Society of Sports Nutritio, Vol.15, No.1 pp. 45, (2018). https://doi.org/10.1186/s12970-018-0249-4
  38. R. H. Shih, C. Y. Wang, C. M. Yang, "NF-kappaB Signaling Pathways in Neurological Inflammation: A Mini Review", Frontiers in molecular neuroscience, Vol.8, pp.77, (2015). https://doi.org/10.3389/fnmol.2015.00077
  39. G. Zhang, P. Yu, X. Liu, "Swim Training Attenuates Inflammation and Improves Insulin Sensitivity in Mice Fed with a High-Fat Diet", International Journal of Endocrinology, Vol.2017, pp. 5940732, (2017). https://doi.org/10.1155/2017/5940732
  40. M. R. Alipour, N. Yousefzade, F. M. Bavil, R. Naderi, R. Ghiasi, "Swimming Impacts on Pancreatic Inflammatory Cytokines, miR-146a and NF-䎫 Expression Levels in Type-2 Diabetic Rats", Current Diabetes Reviews, Vol.16, No.8 pp. 889-894, (2020). https://doi.org/10.2174/1573399815666191115154421
  41. Q. Yu, Z. Xia, E. C. Liong, G. L. Tipoe, "Chronic aerobic exercise improves insulin sensitivity and modulates Nrf2 and NF-kappaB/IkappaBalpha pathways in the skeletal muscle of rats fed with a high fat diet", Molecular medicine reports, Vol.20, No.6 pp. 4963-4972, (2019).