DOI QR코드

DOI QR Code

Effect of Human or Mouse IL-7 on the Homeostasis of Porcine T Lymphocytes

  • Ji Hwa Hong (Departments of Pharmacy, Korea University) ;
  • Sang Hoon Kim (Departments of Pharmacy, Korea University) ;
  • Hyun Gyung Kim (Departments of Pharmacy, Korea University) ;
  • Jun Ho Jang (Departments of Pharmacy, Korea University) ;
  • Ryeo Gang Son (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Seung Pil Pack (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Young-Ho Park (Futuristic Animal Resource & Research Center (FARRC)) ;
  • Philyong Kang (Futuristic Animal Resource & Research Center (FARRC)) ;
  • Kang-Jin Jeong (Futuristic Animal Resource & Research Center (FARRC)) ;
  • Ji-Su Kim (National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hanbyeul Choi (Departments of Pharmacy, Korea University) ;
  • Sun-Uk Kim (Futuristic Animal Resource & Research Center (FARRC)) ;
  • Yong Woo Jung (Departments of Pharmacy, Korea University)
  • Received : 2021.04.22
  • Accepted : 2021.06.20
  • Published : 2021.06.30

Abstract

Due to the inconsistent fluctuation of blood supply for transfusion, much attention has been paid to the development of artificial blood using other animals. Although mini-pigs are candidate animals, contamination of mini-pig T cells in artificial blood may cause a major safety concern. Therefore, it is important to analyze the cross-reactivity of IL-7, the major survival factor for T lymphocytes, between human, mouse, and mini-pig. Thus, we compared the protein sequences of IL-7 and found that porcine IL-7 was evolutionarily different from human IL-7. We also observed that when porcine T cells were cultured with either human or mouse IL-7, these cells did not increase the survival or proliferation compared to negative controls. These results suggest that porcine T cells do not recognize human or mouse IL-7 as their survival factor.

Keywords

Acknowledgement

We thank Kyong Hoon Kim, Seung-min Yeon and Aryeong Choi for their critical comments. This study was supported by grant from the KRIBB Research Initiative Program (KGM4252122) and by Basic Science Research Program (grant NRF-2020R1F1A1048531, NRF-2019R1A6A1A03031807, and NRF-2021R1A2C2004279) of the National Research Foundation of Korea.

References

  1. Park CG, Kim JS, Shin JS, Kim YH, Kim SJ. Current status and future perspectives of xenotransplantation. J Korean Soc Transplant 2009;23:203-213.
  2. Kim JH. Recent review on blood transfusion therapy. J Korean Med Assoc 2013;56:496-503. 
  3. Kresie L. Artificial blood: an update on current red cell and platelet substitutes. Proc Bayl Univ Med Cent 2001;14:158-161.
  4. Cooper DK. A brief history of cross-species organ transplantation. Proc Bayl Univ Med Cent 2012;25:49-57.
  5. Moradi S, Jahanian-Najafabadi A, Roudkenar MH. Artificial blood substitutes: first steps on the long route to clinical utility. Clin Med Insights Blood Disord 2016;9:33-41.
  6. Wakelin D, Donachie AM. Genetic control of immunity to Trichinella spiralis. Donor bone marrow cells determine responses to infection in mouse radiation chimaeras. Immunology 1981;43:787-792.
  7. Wiener LS, Steffen-Smith E, Fry T, Wayne AS. Hematopoietic stem cell donation in children: a review of the sibling donor experience. J Psychosoc Oncol 2007;25:45-66.
  8. Zhao E, Xu H, Wang L, Kryczek I, Wu K, Hu Y, Wang G, Zou W. Bone marrow and the control of immunity. Cell Mol Immunol 2012;9:11-19.
  9. Hara H, Long C, Pawlikowski Z, Koike N, Ezzelarab M, Yeh P, Ayares D, Yazer M, Cooper DK. Abstract #657. Genetically-engineered pigs as a potential source of red blood cells for clinical blood transfusion. Am J Transplant 2009;9:381.
  10. Taylor MJ, Yomtovian R. Optimizing red blood cell transfusion therapy in the 21st century: the power of data analysis for past understanding and future guidance. Transfusion 2013;53:470-475.
  11. Yum SY, Yoon KY, Lee CI, Lee BC, Jang G. Transgenesis for pig models. J Vet Sci 2016;17:261-268.
  12. Dasararaju R, Marques MB. Adverse effects of transfusion. Cancer Contr 2015;22:16-25.
  13. Markey KA, MacDonald KP, Hill GR. The biology of graft-versus-host disease: experimental systems instructing clinical practice. Blood 2014;124:354-362.
  14. Burrows SR, Khanna R, Burrows JM, Moss DJ. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) cross-reactive with a single Epstein-Barr virus CTL epitope: implications for graftversus-host disease. J Exp Med 1994;179:1155-1161.
  15. Okoye IS, Wilson MS. CD4+ T helper 2 cells--microbial triggers, differentiation requirements and effector functions. Immunology 2011;134:368-377.
  16. Mosmann TR. Cytokines, differentiation and functions of subsets of CD4 and CD8 T cells. Behring Inst Mitt 1995:1-6.
  17. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 2010;28:445-489.
  18. Shlomchik WD, Couzens MS, Tang CB, McNiff J, Robert ME, Liu J, Shlomchik MJ, Emerson SG. Prevention of graft versus host disease by inactivation of host antigen-presenting cells. Science 1999;285:412-415.
  19. Hauschild J, Petersen B, Santiago Y, Queisser AL, Carnwath JW, Lucas-Hahn A, Zhang L, Meng X, Gregory PD, Schwinzer R, et al. Efficient generation of a biallelic knockout in pigs using zinc-finger nucleases. Proc Natl Acad Sci U S A 2011;108:12013-12017.
  20. Tan JT, Ernst B, Kieper WC, LeRoy E, Sprent J, Surh CD. Interleukin (IL)-15 and IL-7 jointly regulate homeostatic proliferation of memory phenotype CD8+ cells but are not required for memory phenotype CD4+ cells. J Exp Med 2002;195:1523-1532.
  21. Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci U S A 2001;98:8732-8737.
  22. Rathmell JC, Farkash EA, Gao W, Thompson CB. IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 2001;167:6869-6876.
  23. Hong C, Luckey MA, Park JH. Intrathymic IL-7: the where, when, and why of IL-7 signaling during T cell development. Semin Immunol 2012;24:151-158.
  24. Hare KJ, Jenkinson EJ, Anderson G. An essential role for the IL-7 receptor during intrathymic expansion of the positively selected neonatal T cell repertoire. J Immunol 2000;165:2410-2414.
  25. Offner F, Plum J. The role of interleukin-7 in early T-cell development. Leuk Lymphoma 1998;30:87-99.
  26. Krenger W, Blazar BR, Hollander GA. Thymic T-cell development in allogeneic stem cell transplantation. Blood 2011;117:6768-6776.
  27. Ma D, Wei Y, Liu F. Regulatory mechanisms of thymus and T cell development. Dev Comp Immunol 2013;39:91-102.
  28. Kieper WC, Tan JT, Bondi-Boyd B, Gapin L, Sprent J, Ceredig R, Surh CD. Overexpression of interleukin (IL)-7 leads to IL-15-independent generation of memory phenotype CD8+ T cells. J Exp Med 2002;195:1533-1539.
  29. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406-425.
  30. Kaur G, Iyer LM, Subramanian S, Aravind L. Evolutionary convergence and divergence in archaeal chromosomal proteins and Chromo-like domains from bacteria and eukaryotes. Sci Rep 2018;8:6196.
  31. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870-1874.
  32. Mendoza A, Fang V, Chen C, Serasinghe M, Verma A, Muller J, Chaluvadi VS, Dustin ML, Hla T, Elemento O, et al. Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature 2017;546:158-161.
  33. Tanabe T, Watanabe H, Shah JA, Sahara H, Shimizu A, Nomura S, Asfour A, Danton M, Boyd L, Dardenne Meyers A, et al. Role of intrinsic (graft) versus extrinsic (host) factors in the growth of transplanted organs following allogeneic and xenogeneic transplantation. Am J Transplant 2017;17:1778-1790.
  34. Fry TJ, Mackall CL. Interleukin-7: from bench to clinic. Blood 2002;99:3892-3904.
  35. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010;5:725-738.
  36. Barata JT, Silva A, Abecasis M, Carlesso N, Cumano A, Cardoso AA. Molecular and functional evidence for activity of murine IL-7 on human lymphocytes. Exp Hematol 2006;34:1133-1142.
  37. Francois B, Jeannet R, Daix T, Walton AH, Shotwell MS, Unsinger J, Monneret G, Rimmele T, Blood T, Morre M, et al. Interleukin-7 restores lymphocytes in septic shock: the iris-7 randomized clinical trial. JCI Insight 2018;3:e98960.
  38. van Lent AU, Dontje W, Nagasawa M, Siamari R, Bakker AQ, Pouw SM, Maijoor KA, Weijer K, Cornelissen JJ, Blom B, et al. IL-7 enhances thymic human T cell development in "human immune system" Rag2-/-IL-2Rgammac-/- mice without affecting peripheral T cell homeostasis. J Immunol 2009;183:7645-7655.