DOI QR코드

DOI QR Code

Metallothionein MT1M Suppresses Carcinogenesis of Esophageal Carcinoma Cells through Inhibition of the Epithelial-Mesenchymal Transition and the SOD1/PI3K Axis

  • Li, Dandan (Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University) ;
  • Peng, Weiyan (Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University) ;
  • Wu, Bin (Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University) ;
  • Liu, Huan (Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University) ;
  • Zhang, Ruizhen (Department of Otolaryngology Head and Neck Surgery, Daping Hospital, Army Medical University) ;
  • Zhou, Ruiqin (Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University) ;
  • Yao, Lijun (Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University) ;
  • Ye, Lin (Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University)
  • Received : 2020.08.28
  • Accepted : 2021.02.22
  • Published : 2021.04.30

Abstract

Metallothionein (MT1M) belongs to a family of cysteinerich cytosolic protein and has been reported to be a tumor suppressor gene in multiple cancers. However, its role in esophageal carcinoma carcinogenesis remains unclear. In this study, MT1M expression was correlated with tumor type, stage, drinking and smoking history, as well as patient survival. We also studied the regulation and biological function of MT1M in esophageal squamous cell carcinoma (ESCC). We have found that MT1M is significantly downregulated in ESCC tissues compared with adjacent non-cancer tissues. Furthermore, restoration of expression by treatment with the demethylation agent A + T showed that MT1M downregulation might be closely related to hypermethylation in its promoter region. Over-expression of MT1M in ESCC cells significantly altered cell morphology, induced apoptosis, and reduced colony formation, cell viability, migration and epithelial-mesenchymal transition. Moreover, based on reactive oxygen species (ROS) levels, a superoxide dismutase 1 (SOD1) activity assay and protein analysis, we verified that the tumor-suppressive function of MT1M was at least partially caused by its upregulation of ROS levels, downregulation of SOD1 activity and phosphorylation of the SOD1 downstream pathway PI3K/AKT. In conclusion, our results demonstrated that MT1M was a novel tumor-suppressor in ESCC and may be disrupted by promoter CpG methylation during esophageal carcinogenesis.

Keywords

Acknowledgement

This study was supported by Natural Science Foundation of Chongqing, Commission of Science and Technology of Chongqing, China (cstc2019jcyj-msxmX0861).

References

  1. Arriaga, J.M., Levy, E.M., Bravo, A.I., Bayo, S.M., Amat, M., Aris, M., Hannois, A., Bruno, L., Roberti, M.P., Loria, F.S., et al. (2012). Metallothionein expression in colorectal cancer: relevance of different isoforms for tumor progression and patient survival. Hum. Pathol. 43, 197-208. https://doi.org/10.1016/j.humpath.2011.04.015
  2. Babula, P., Masarik, M., Adam, V., Eckschlager, T., Stiborova, M., Trnkova, L., Skutkova, H., Provaznik, I., Hubalek, J., and Kizek, R. (2012). Mammalian metallothioneins: properties and functions. Metallomics 4, 739-750. https://doi.org/10.1039/c2mt20081c
  3. Bindoli, A. and Rigobello, M.P. (2013). Principles in redox signaling: from chemistry to functional significance. Antioxid. Redox Signal. 18, 1557-1593. https://doi.org/10.1089/ars.2012.4655
  4. Brabletz, T., Kalluri, R., Nieto, M.A., and Weinberg, R.A. (2018). EMT in cancer. Nat. Rev. Cancer 18, 128-134. https://doi.org/10.1038/nrc.2017.118
  5. Cairns, R.A., Harris, I.S., and Mak, T.W. (2011). Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85-95. https://doi.org/10.1038/nrc2981
  6. Carter, B.J., Anklesaria, P., Choi, S., and Engelhardt, J.F. (2009). Redox modifier genes and pathways in amyotrophic lateral sclerosis. Antioxid. Redox Signal. 11, 1569-1586. https://doi.org/10.1089/ars.2008.2414
  7. Castaldo, S.A., Freitas, J.R., Conchinha, N.V., and Madureira, P.A. (2016). The tumorigenic roles of the cellular REDOX regulatory systems. Oxid. Med. Cell. Longev. 2016, 8413032. https://doi.org/10.1155/2016/8413032
  8. Changjun, L., Feizhou, H., Dezhen, P., Zhao, L., and Xianhai, M. (2018). MiR-545-3p/MT1M axis regulates cell proliferation, invasion and migration in hepatocellular carcinoma. Biomed. Pharmacother. 108, 347-354. https://doi.org/10.1016/j.biopha.2018.09.009
  9. Che, M., Wang, R., Li, X., Wang, H.Y., and Zheng, X.F.S. (2016). Expanding roles of superoxide dismutases in cell regulation and cancer. Drug Discov. Today 21, 143-149. https://doi.org/10.1016/j.drudis.2015.10.001
  10. Chen, Y., Quan, R., Bhandari, A., Chen, Z., Guan, Y., Xiang, J., You, J., and Teng, L. (2019). Low metallothionein 1M (MT1M) is associated with thyroid cancer cell lines progression. Am. J. Transl. Res. 11, 1760-1770.
  11. Cheng, Y., Liang, P., Geng, H., Wang, Z., Li, L., Cheng, S.H., Ying, J., Su, X., Ng, K.M., Ng, M.H., et al. (2012). A novel 19q13 nucleolar zinc finger protein suppresses tumor cell growth through inhibiting ribosome biogenesis and inducing apoptosis but is frequently silenced in multiple carcinomas. Mol. Cancer Res. 10, 925-936. https://doi.org/10.1158/1541-7786.MCR-11-0594
  12. Cui, Q., Wang, J.Q., Assaraf, Y.G., Ren, L., Gupta, P., Wei, L., Ashby, C.R., Jr., Yang, D.H., and Chen, Z.S. (2018). Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updat. 41, 1-25. https://doi.org/10.1016/j.drup.2018.11.001
  13. D'Autreaux, B. and Toledano, M.B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8, 813-824. https://doi.org/10.1038/nrm2256
  14. Dimayuga, F.O., Wang, C., Clark, J.M., Dimayuga, E.R., Dimayuga, V.M., and Bruce-Keller, A.J. (2007). SOD1 overexpression alters ROS production and reduces neurotoxic inflammatory signaling in microglial cells. J. Neuroimmunol. 182, 89-99. https://doi.org/10.1016/j.jneuroim.2006.10.003
  15. Du, H., Chen, B., Jiao, N.L., Liu, Y.H., Sun, S.Y., and Zhang, Y.W. (2020). Elevated glutathione peroxidase 2 expression promotes cisplatin resistance in lung adenocarcinoma. Oxid. Med. Cell. Longev. 2020, 7370157.
  16. Du, H.Y., Li, Y., Olivo, M., Yip, G.W., and Bay, B.H. (2006). Differential up-regulation of metallothionein isoforms in well-differentiated nasopharyngeal cancer cells in vitro by photoactivated hypericin. Oncol. Rep. 16, 1397-1402.
  17. Emri, E., Egervari, K., Varvolgyi, T., Rozsa, D., Miko, E., Dezso, B., Veres, I., Mehes, G., Emri, G., and Remenyik, E. (2013). Correlation among metallothionein expression, intratumoural macrophage infiltration and the risk of metastasis in human cutaneous malignant melanoma. J. Eur. Acad. Dermatol. Venereol. 27, e320-e327. https://doi.org/10.1111/j.1468-3083.2012.04653.x
  18. Ferrario, C., Lavagni, P., Gariboldi, M., Miranda, C., Losa, M., Cleris, L., Formelli, F., Pilotti, S., Pierotti, M.A., and Greco, A. (2008). Metallothionein 1G acts as an oncosupressor in papillary thyroid carcinoma. Lab. Invest. 88, 474-481. https://doi.org/10.1038/labinvest.2008.17
  19. Gao, L., Loveless, J., Shay, C., and Teng, Y. (2020). Targeting ROS-mediated crosstalk between autophagy and apoptosis in cancer. Adv. Exp. Med. Biol. 1260, 1-12. https://doi.org/10.1007/978-3-030-42667-5_1
  20. Griess, B., Tom, E., Domann, F., and Teoh-Fitzgerald, M. (2017). Extracellular superoxide dismutase and its role in cancer. Free Radic. Biol. Med. 112, 464-479. https://doi.org/10.1016/j.freeradbiomed.2017.08.013
  21. Hoxhaj, G. and Manning, B.D. (2020). The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat. Rev. Cancer 20, 74-88. https://doi.org/10.1038/s41568-019-0216-7
  22. Jadhav, R.R., Ye, Z., Huang, R.L., Liu, J., Hsu, P.Y., Huang, Y.W., Rangel, L.B., Lai, H.C., Roa, J.C., Kirma, N.B., et al. (2015). Genome-wide DNA methylation analysis reveals estrogen-mediated epigenetic repression of metallothionein-1 gene cluster in breast cancer. Clin. Epigenetics 7, 13. https://doi.org/10.1186/s13148-015-0045-9
  23. Juarez, J.C., Manuia, M., Burnett, M.E., Betancourt, O., Boivin, B., Shaw, D.E., Tonks, N.K., Mazar, A.P., and Donate, F. (2008). Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. U. S. A. 105, 7147-7152. https://doi.org/10.1073/pnas.0709451105
  24. Kawahara, B., Ramadoss, S., Chaudhuri, G., Janzen, C., Sen, S., and Mascharak, P.K. (2019). Carbon monoxide sensitizes cisplatin-resistant ovarian cancer cell lines toward cisplatin via attenuation of levels of glutathione and nuclear metallothionein. J. Inorg. Biochem. 191, 29-39. https://doi.org/10.1016/j.jinorgbio.2018.11.003
  25. Krezel, A. and Maret, W. (2017). The functions of metamorphic metallothioneins in zinc and copper metabolism. Int. J. Mol. Sci. 18, 1237. https://doi.org/10.3390/ijms18061237
  26. Kumari, M.V., Hiramatsu, M., and Ebadi, M. (1998). Free radical scavenging actions of metallothionein isoforms I and II. Free Radic. Res. 29, 93-101. https://doi.org/10.1080/10715769800300111
  27. Lee, G.Y., Kenny, P.A., Lee, E.H., and Bissell, M.J. (2007). Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359-365. https://doi.org/10.1038/nmeth1015
  28. Li, L., Ying, J., Tong, X., Zhong, L., Su, X., Xiang, T., Shu, X., Rong, R., Xiong, L., Li, H., et al. (2014). Epigenetic identification of receptor tyrosine kinase-like orphan receptor 2 as a functional tumor suppressor inhibiting beta-catenin and AKT signaling but frequently methylated in common carcinomas. Cell. Mol. Life Sci. 71, 2179-2192. https://doi.org/10.1007/s00018-013-1485-z
  29. Mao, J., Yu, H., Wang, C., Sun, L., Jiang, W., Zhang, P., Xiao, Q., Han, D., Saiyin, H., Zhu, J., et al. (2012). Metallothionein MT1M is a tumor suppressor of human hepatocellular carcinomas. Carcinogenesis 33, 2568-2577. https://doi.org/10.1093/carcin/bgs287
  30. Miles, A.T., Hawksworth, G.M., Beattie, J.H., and Rodilla, V. (2000). Induction, regulation, degradation, and biological significance of mammalian metallothioneins. Crit. Rev. Biochem. Mol. Biol. 35, 35-70. https://doi.org/10.1080/10409230091169168
  31. Oka, D., Yamashita, S., Tomioka, T., Nakanishi, Y., Kato, H., Kaminishi, M., and Ushijima, T. (2009). The presence of aberrant DNA methylation in noncancerous esophageal mucosae in association with smoking history: a target for risk diagnosis and prevention of esophageal cancers. Cancer 115, 3412-3426. https://doi.org/10.1002/cncr.24394
  32. Patel, G.K., Khan, M.A., Bhardwaj, A., Srivastava, S.K., Zubair, H., Patton, M.C., Singh, S., Khushman, M., and Singh, A.P. (2017). Exosomes confer chemoresistance to pancreatic cancer cells by promoting ROS detoxification and miR-155-mediated suppression of key gemcitabine-metabolising enzyme, DCK. Br. J. Cancer 116, 609-619. https://doi.org/10.1038/bjc.2017.18
  33. Rojo de la Vega, M., Chapman, E., and Zhang, D.D. (2018). NRF2 and the hallmarks of cancer. Cancer Cell 34, 21-43. https://doi.org/10.1016/j.ccell.2018.03.022
  34. Salt, M.B., Bandyopadhyay, S., and McCormick, F. (2014). Epithelial-tomesenchymal transition rewires the molecular path to PI3K-dependent proliferation. Cancer Discov. 4, 186-199. https://doi.org/10.1158/2159-8290.CD-13-0520
  35. Schumacker, P.T. (2015). Reactive oxygen species in cancer: a dance with the devil. Cancer Cell 27, 156-157. https://doi.org/10.1016/j.ccell.2015.01.007
  36. Shadel, G.S. and Horvath, T.L. (2015). Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560-569. https://doi.org/10.1016/j.cell.2015.10.001
  37. Si, M. and Lang, J. (2018). The roles of metallothioneins in carcinogenesis. J. Hematol. Oncol. 11, 107. https://doi.org/10.1186/s13045-018-0645-x
  38. Sibenaller, Z.A., Welsh, J.L., Du, C., Witmer, J.R., Schrock, H.E., Du, J., Buettner, G.R., Goswami, P.C., Cieslak, J.A., 3rd, and Cullen, J.J. (2014). Extracellular superoxide dismutase suppresses hypoxia-inducible factor1alpha in pancreatic cancer. Free Radic. Biol. Med. 69, 357-366. https://doi.org/10.1016/j.freeradbiomed.2014.02.002
  39. Siegel, R.L., Miller, K.D., and Jemal, A. (2020). Cancer statistics, 2020. CA Cancer J. Clin. 70, 7-30. https://doi.org/10.3322/caac.21590
  40. Sosa, V., Moline, T., Somoza, R., Paciucci, R., Kondoh, H., and LLeonart, M.E. (2013). Oxidative stress and cancer: an overview. Ageing Res. Rev. 12, 376-390. https://doi.org/10.1016/j.arr.2012.10.004
  41. Theocharis, S.E., Margeli, A.P., Klijanienko, J.T., and Kouraklis, G.P. (2004). Metallothionein expression in human neoplasia. Histopathology 45, 103-118. https://doi.org/10.1111/j.1365-2559.2004.01922.x
  42. Trachootham, D., Alexandre, J., and Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579-591. https://doi.org/10.1038/nrd2803
  43. Tsui, K.H., Hou, C.P., Chang, K.S., Lin, Y.H., Feng, T.H., Chen, C.C., Shin, Y.S., and Juang, H.H. (2019). Metallothionein 3 is a hypoxia-upregulated oncogene enhancing cell invasion and tumorigenesis in human bladder carcinoma cells. Int. J. Mol. Sci. 20, 980. https://doi.org/10.3390/ijms20040980
  44. West, A.K., Stallings, R., Hildebrand, C.E., Chiu, R., Karin, M., and Richards, R.I. (1990). Human metallothionein genes: structure of the functional locus at 16q13. Genomics 8, 513-518. https://doi.org/10.1016/0888-7543(90)90038-v
  45. Yamada, H., Yamada, Y., Adachi, T., Fukatsu, A., Sakuma, M., Futenma, A., and Kakumu, S. (2000). Protective role of extracellular superoxide dismutase in hemodialysis patients. Nephron 84, 218-223. https://doi.org/10.1159/000045580
  46. Ye, L., Xiang, T., Fan, Y., Zhang, D., Li, L., Zhang, C., He, X., Xiang, Q., Tao, Q., and Ren, G. (2019). The 19q13 KRAB Zinc-finger protein ZFP82 suppresses the growth and invasion of esophageal carcinoma cells through inhibiting NF-kappaB transcription and inducing apoptosis. Epigenomics 11, 65-80. https://doi.org/10.2217/epi-2018-0092
  47. Ye, L., Xiang, T., Zhu, J., Li, D., Shao, Q., Peng, W., Tang, J., Li, L., and Ren, G. (2018). Interferon consensus sequence-binding protein 8, a tumor suppressor, suppresses tumor growth and invasion of non-small cell lung cancer by interacting with the Wnt/beta-catenin pathway. Cell. Physiol. Biochem. 51, 961-978. https://doi.org/10.1159/000495399
  48. Zeng, H., Zheng, R., Zhang, S., Zuo, T., Xia, C., Zou, X., and Chen, W. (2016). Esophageal cancer statistics in China, 2011: estimates based on 177 cancer registries. Thorac. Cancer 7, 232-237. https://doi.org/10.1111/1759-7714.12322
  49. Zheng, Y., Jiang, L., Hu, Y., Xiao, C., Xu, N., Zhou, J., and Zhou, X. (2017). Metallothionein 1H (MT1H) functions as a tumor suppressor in hepatocellular carcinoma through regulating Wnt/beta-catenin signaling pathway. BMC Cancer 17, 161. https://doi.org/10.1186/s12885-017-3139-2

Cited by

  1. Metallothionein 2A Expression in Cancer-Associated Fibroblasts and Cancer Cells Promotes Esophageal Squamous Cell Carcinoma Progression vol.13, pp.18, 2021, https://doi.org/10.3390/cancers13184552