DOI QR코드

DOI QR Code

엽록소형광 매개변수를 이용한 토마토 유전자원의 유묘 단계 염류 스트레스 수준 평가

Application of Chlorophyll Fluorescence Parameters to Diagnose Salinity Tolerance in the Seedling of Tomato Genetic Resources

  • 신유경 (전북대학교 농업생명과학대학 원예학과 대학원) ;
  • 조정수 (전북대학교 농업생명과학대학 원예학과) ;
  • 조명철 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 양은영 (농촌진흥청 국립원예특작과학원 채소과) ;
  • 안율균 (국립한국농수산대학) ;
  • 황인덕 ((주)부농종묘 육종연구소) ;
  • 이준구 (전북대학교 농업생명과학대학 원예학과)
  • Shin, Yu Kyeong (Department of Horticulture, College of Agriculture & Life Sciences, Jeonbuk National University) ;
  • Jo, Jung Su (Department of Horticulture, College of Agriculture & Life Sciences, Jeonbuk National University) ;
  • Cho, Myeong-Cheoul (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Yang, Eun-Young (Vegetable Research Division, National Institute of Horticultural & Herbal Science, RDA) ;
  • Ahn, Yul Kyun (Department of vegetable crops, Korea National College of Agriculture and Fisheries) ;
  • Hwang, In deok (R&D Center, Bunong seed Co., Ltd.) ;
  • Lee, Jun Gu (Department of Horticulture, College of Agriculture & Life Sciences, Jeonbuk National University)
  • 투고 : 2021.04.07
  • 심사 : 2021.04.28
  • 발행 : 2021.04.30

초록

본 연구에서는 토마토 유전자원 49점을 대상으로 엽록소형광 측정 프로토콜인 Quenching act 2를 이용하여 염류 스트레스 수준을 구분할 수 있는 엽록소형광 매개변수를 선발하기 위해 수행되었다. 염류 스트레스 평가는 3엽기 유묘 단계의 토마토 유전자원 49점을 대상으로, 1일 1회 NaCl 400mM로 저면관수를 처리하였다. 염류 스트레스 처리 4일차에 토마토 유묘의 지상부 생체중, 엽록소 및 프롤린 함량 분석을 실시하였다. 토마토 유전자원 49점의 지상부 생체중 및 엽록소 함량은 대부분 감소하였으며, 프롤린 함량 증가율은 유전자원 별로 유사하였다. 대표적인 12개의 엽록소형광 매개변수는 염류 스트레스에 노출되는 기간이 길어질수록 증감하는 경향을 보였으며, 염류 스트레스에 노출될수록 Y(NO)는 증가하였다. 본 연구결과에서 유전자원 49점의 광계II의 비조절 에너지 소산의 양자 수율[Y(NO)]은 염류 스트레스 하에 차이를 보였으며, 염류 스트레스에 저항성을 지닌 염류 저항성 유전자원과 염류 스트레스에 감수성 유전자원 간의 차이를 확인할 수 있는 엽록소형광 매개변수로 판단되며, 토마토 유전자원에 대해 염류 스트레스 수준을 평가할 수 있는 보완적인 도구로 활용 가능하다고 판단된다.

To evaluate the possibility of a non-destructive diagnosis of salinity stress in the tomato genetic resources using chlorophyll fluorescence (CF) imaging technique, 49 tomato genetic resources at 3-leaf stages were used in this study. The seedlings were irrigated once a day with tap water and 400 mM NaCl for control and salinity stress treatment, respectively and the CF parameters were assessed during four days of the experimental period. The shoots were collected and used for the measurement of growth parameters, chlorophyll and proline contents at the end of the treatment. The chlorophyll content (a and b) and fresh weight showed differential changes (%) among the susceptible, moderately resistant, and resistant genetic resources, while changes in the proline content were similar in all the genetic resources. All the CF parameters showed a positive or negative response to the salinity stress in which the quantum yield of non-regulated energy dissipation in PSII [Y(NO)] continuously increased regardless of the treatment time in the resistant, moderately resistant and susceptible genetic resources. Y(NO) was used for the screening of the 49 genetic resources and the result showed that the clear differences in Y(NO) among the susceptible, moderately resistant, and resistant genetic resources. It is concluded that the Y(NO) can be used as a CF parameter index for the screening of salinity stress tolerance in tomato genetic resources.

키워드

과제정보

본 연구는 농촌진흥청 국립원예특작과학원 공동연구사업 농축산물 수출 확대장애요인 채소기술개발(PJ0135612021)과 이공분야 대학중점 연구소 지원사업/한국연구재단(NRF-2019R1A6A1A09031717)에 의해 수행되었음.

참고문헌

  1. Adhikari N.D., I. Simko, and B. Mou 2019, Phenomic and physiological analysis of salinity effects on lettuce. Sensors (Basel) 19:4814. doi:10.3390/s19214814
  2. Agami R.A. 2013, Alleviating the adverse effects of NaCl stress in maize seedlings by pretreating seeds with salicylic acid and 24-epibrassinolide. South African J Bot 88:171-177. doi:10.1016/j.sajb.2013.07.019
  3. Al-Saady N.A., A.J. Khan, L. Rajesh, and H.A. Esechie 2012, Effect of salt stress on germination, proline metabolism and chlorophyll content of Fenugreek (Tringonella foenum gracium L.). J Plant Sci 7:176-185. doi:10.3923/jps.2012.176.185
  4. Bacha H., M. Tekaya, S. Drine, F. Guasmi, L. Touil, H. Enneb, T. Triki, F. Cheour, and A. Ferchichi 2017, Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. South African J Bot 108:364-369. doi:10.1016/j.sajb.2016.08.018
  5. Backhausen J.E., M. Klein, M. Klocke, S. Jung, and R. Scheibe 2005, Salt tolerance of potato (Solanum tuberosum L. var. Desiree) plants depends on light intensity and air humidity. Plant Sci 169:229-237. doi:10.1016/j.plantsci.2005.03.021
  6. Baker N.R. 2008, Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review Plant Bio 59:89-113. doi:10.1146/annurev.arplant.59.032607.092759
  7. Bates L.S., R.P. Waldren, and I.D. Teare 1973, Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207. doi:10.1007/BF00018060
  8. Cen H., H. Weng, J. Yao, M. He, J. Lv, S. Hua, H. Li, and Y. He 2017, Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of citrus huanglongbing. Front. Plant Sci 8:1509. doi:10.3389/fpls.2017.01509
  9. Colla G., Y. Rouphael, C. Leonardi, and Z. Bie 2010, Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae 127:147-155. doi:10.1016/j.scienta.2010.08.004
  10. Fujii R., N. Yamano, H. Hashimoto, N. Misawa, and K. Ifuku 2016, Photoprotection vs. photoinhibition of photosystem II in transplastomic lettuce (Lactuca sativa) dominantly accumulating astaxanthin. Plant and Cell Physiology 57: 1518-1529. doi:10.1093/pcp/pcv187
  11. Gharsallah C., H. Fakhfakh, D. Grubb, and F. Gorsane 2016, Effect of salt stress on ion concentration, proline content, antioxidant enzyme activities and gene expression in tomato cultivars. AoB Plants 8:plw055. doi:10.1093/aobpla/plw055
  12. Heidari, M. 2010, Nucleic acid metabolism, proline concentration and antioxidants enzyme activity in canola (Brassica nupus L.) under salinity stress. Agric Sci China 9:504-511. doi: 10.1016/S1671-2927(09)60123-1
  13. Kalhor M.S., S. Aliniaeifard, M. Seif, E.J. Asayesh, F. Bernard, B. Hassani, and T. Li 2018, Enhanced salt tolerance and photosynthetic performance: Implication of γ-amino butyric acid application in salt-exposed lettuce (Lactuca sativa L.) plants. Plant Physiol Biochem 130:157-172. doi:10.1016/j.plaphy.2018.07.003
  14. Lichtenthaler H.K., F. Babani, and G. Langsdorf 2007, Chlorophyll fluorescence imaging of photosynthetic activity in sun and shade leaves of trees. Photosynth Res 93:235-244. doi:10.1007/s11120-007-9174-0
  15. Lu C., and J. Zhang 2000, Role of light in the response of PSII photochemistry to salt stress in the cyanobacterium Spirulina platensis. J Exp Bot 51:911-917. doi:10.1093/jxb/51.346.911
  16. Maxwell K., and G.N. Johnson 2000, Chlorophyll fluorescence-a practical guide. J Exp Bot 51:659-668. doi:10.1093/jexbot/51.345.659
  17. Mehta P., A. Jajoo, S. Mathur, and S. Bharti 2010, Chlorophyll a fluorescence study revealing effects of high salt stress on Photosystem II in wheat leaves. Plant Physiol Biochem 48:16-20. doi:10.1016/j.plaphy.2009.10.006
  18. Murchie E.H., and T. Lawson 2013, Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J Exp Bot 64:3983-3998. doi:10.1093/jxb/ert208
  19. Najar R., S. Aydi, S. Sassi-Aydi, A. Zarai, and C. Abdelly 2019, Effect of salt stress on photosynthesis and chlorophyll fluorescence in Medicago truncatula. Plant Biosys 153:88-97. doi:10.1080/11263504.2018.1461701
  20. Nan X., Z. Huihui, Z. Haixiu, W. Yining, L. Jinbo, X. Li, Y. Zepeng, Z. Wenxu, Q. Yi, and S. Guangyu 2018, The response of photosynthetic functions of F1 cutting seedling from Physocarpus amurensis Maxim (♀) × Physocarpus opulifolius "Diabolo"(♂) and the parental seedlings to salt stress. Front Plant Sci 9:714. doi:10.3389/fpls.2018.00714
  21. Perez-Bueno M.L., M. Pineda, and M. Baron 2019, Phenotyping plant responses to biotic stress by chlorophyll fluorescence imaging. Front Plant Sci 10:1135. doi:10.3389/fpls.2019.01135
  22. Prinzenberg A.E., M. Viquez-Zamora, J. Harbinson, P. Lindhout, and S.V. Heusden 2018, Chlorophyll fluorescence imaging reveals genetic variation and loci for a photosynthetic trait in diploid potato. Physiologia Plantarum 164:163-175. doi:10.1111/ppl.12689
  23. Qiu N., and C. Lu 2003, Enhanced tolerance of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasiatica plants. Plant, Cell & Environ 26:1137-1145. doi:10.1046/j.1365-3040.2003.01038.x
  24. Ranjbarfordoei A., R. Samson, and P.V. Damme 2006, Chlorophyll fluorescence performance of sweet almond [Prunus dulcis (Miller)] D. Webb] in response to salinity stress induced by NaCl. Photosynthetica 44:513-522. doi:10.1007/s11099-006-0064-z
  25. Reddy P.S., G. Jogeswar, G.K. Rasineni, M. Maheswari, A.R. Reddy, R.K. Varshney, and P.B.K. Kishor 2015, Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum [Sorghum bicolor (L.) Moench]. Plant Physiol Biochem 94:104-113. doi: 10.1016/j.plaphy.2015.05.014
  26. Ruban A.V. 2016, Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol 170:1903-1916. doi:10.1104/pp.15.01935
  27. Sanchez-Moreiras A.M., E. Grana, M.J. Reigosa, and F. Araniti 2020, Imaging of chlorophyll a fluorescence in natural compound-induced stress detection. Front Plant Sci 11. doi:10.3389/fpls.2020.583590
  28. Shin Y.K., S.R. Bhandari, J.S. Jo, J.W. Song, M.C. Cho, E.Y. Yang, and J.G. Lee 2020a, Response to Salt Stress in Lettuce: Changes in Chlorophyll Fluorescence Parameters, Phytochemical Contents, and Antioxidant Activities. Agronomy 10:1627. doi:10.3390/agronomy10111627
  29. Shin Y.K., S.R. Bhandari, M.C. Cho, and J.G. Lee 2020b, Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Hortic Environ Biotechnol 61:433-443. doi:10.1007/s13580-020-00231-z
  30. Stevens J., T. Senaratna, and K. Sivasthamparam 2006, Salicylic acid induces salinity tolerance in tomato (Lycopersicon esculentum cv. Roma): associated changes in gas exchange, water relations and membrane Stabilisation. Plant Growth Regul 49:77-83. doi:10.1007/s10725-006-0019-1
  31. Strauss A.J., G.H.J. Kruger, R.J. Strasser, and P.D.R.V. Heerden 2006, Ranking of dark chilling tolerance in soybean genotypes probed by the chlorophyll a fluorescence transient OJIP. Environ Exp Bot 56:147-157. doi:10.1016/j.envexpbot.2005.01.011
  32. Streb P., S. Aubert, E. Gout, J. Feierabend, and R. Bligny 2008, Cross tolerance to heavy-metal and cold-induced photoinhibiton in leaves of Pisum sativum acclimated to low temperature. Physiol Mol Bio Plants 14:185-193. doi:10.1007/s12298-008-0018-y
  33. Taibi K., F. Taibi, L.A. Abderrahim, A. Ennajah, M. Belkhodja, and J.M. Mulet 2016, Effect of salt stress in growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaselus vulgaris L. South African J Bot 105:306-312. doi:10.1016/j.sajb.2016.03.011
  34. Tsai Y.C., K.C. Chen, T.S. Cheng, C. Lee, S.H. Lin, and C.W. Tung 2019, Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. BMC Plant Biology 19:403. doi:10.1186/s12870-019-1983-8
  35. Warren C.R. 2008, Rapid measurement of chlorophylls with a microplate reader. J Plant Nutrition 31:1321-1332. doi 10.1080/01904160802135092
  36. Zhao C., O. Zayed, F. Zeng, C. Liu, L. Zhang, P. Zhu, C.C. Hsu, Y.E. Tuncil, W.A. Tao, N.C. Carpita, and J.K. Zhu 2019, Arabinose biosynthesis is critical for salt stress tolerance in Arabidopsis. New Phytologist, 224:274-290. doi:10.1111/nph.15867
  37. Zhu Y.F., Y.X. Wu, Y. Hu, X.M. Jia, T. Zhao, L. Cheng, and Y.X. Wang 2019, Tolerance of two apple rootstocks to short-term salt stress: focus on chlorophyll degradation, photosynthesis, hormone and leaf ultrastructures. Acta Physiol Plant 41:87. doi:10.1007/s11738-019-2877-y
  38. Zribi L., G. Fatma, R. Fatma, R. Salwa, N. Hassan, and R.M. Nejib 2009, Application of chlorophyll fluorescence for the diagnosis of salt stress in tomato "Solanum lycopersicum (variety Rio Grande)". Scientia Horticulturae 120:367-372. doi:10.1016/j.scienta.2008.11.025