과제정보
This research was funded by the National Research Foundation of Korea Government Grant (NRF-2020R1A2C101409911). I would like to thank Dr. Boksuk Kim for his invaluable support in the experiments of FAF1 overexpression at the SNpc of A53T mice.
참고문헌
- Al Oustah, A., Danesin, C., Khouri-Farah, N., Farreny, M.A., Escalas, N., Cochard, P., Glise, B., and Soula, C. (2014). Dynamics of sonic hedgehog signaling in the ventral spinal cord are controlled by intrinsic changes in source cells requiring sulfatase 1. Development 141, 1392-1403. https://doi.org/10.1242/dev.101717
- Arenas, E. (2014). Wnt signaling in midbrain dopaminergic neuron development and regenerative medicine for Parkinson's disease. J. Mol. Cell Biol. 6, 42-53. https://doi.org/10.1093/jmcb/mju001
- Bai, C.B., Auerbach, W., Lee, J.S., Stephen, D., and Joyner, A.L. (2002). Gli2, but not Gli1, is required for initial Shh signaling and ectopic activation of the Shh pathway. Development 129, 4753-4761. https://doi.org/10.1242/dev.129.20.4753
- Barth, K.A. and Wilson, S.W. (1995). Expression of zebrafish nk2.2 is influenced by sonic hedgehog/vertebrate hedgehog-1 and demarcates a zone of neuronal differentiation in the embryonic forebrain. Development 121, 1755-1768. https://doi.org/10.1242/dev.121.6.1755
- Bomont, P., Cavalier, L., Blondeau, F., Hamida, C.B., Belal, S., Tazir, M., Demir, E., Topaloglu, H., Korinthenberg, R., Landrieu, P., et al. (2000). The gene encoding gigaxonin, a new member of the cytoskeletal BTB/kelch repeat family, is mutated in giant axonal neuropathy. Nat. Genet. 26, 370-374. https://doi.org/10.1038/81701
- Borodovsky, N., Ponomaryov, T., Frenkel, S., and Levkowitz, G. (2009). Neural protein Olig2 acts upstream of the transcriptional regulator Sim1 to specify diencephalic dopaminergic neurons. Dev. Dyn. 238, 826-834. https://doi.org/10.1002/dvdy.21894
- Briscoe, J., Sussel, L., Serup, P., Hartigan-O'Connor, D., Jessell, T.M., Rubenstein, J.L.R., and Ericson, J. (1999). Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622-627. https://doi.org/10.1038/19315
- Chin, K.T., Xu, H.T., Ching, Y.P., and Jin, D.Y. (2007). Differential subcellular localization and activity of kelch repeat proteins KLHDC1 and KLHDC2. Mol. Cell. Biochem. 296, 109-119. https://doi.org/10.1007/s11010-006-9304-6
- Ciruna, B., Jenny, A., Lee, D., Mlodzik, M., and Schier, A.F. (2006). Planar cell polarity signalling couples cell division and morphogenesis during neurulation. Nature 439, 220-224. https://doi.org/10.1038/nature04375
- Clarke, J. (2009). Role of polarized cell divisions in zebrafish neural tube formation. Curr. Opin. Neurobiol. 19, 134-138. https://doi.org/10.1016/j.conb.2009.04.010
- Del Giacco, L., Pistocchi, A., Cotelli, F., Fortunato, A.E., and Sordino, P. (2008). A peek inside the neurosecretory brain through Orthopedia lenses. Dev. Dyn. 237, 2295-2303. https://doi.org/10.1002/dvdy.21668
- Dhanoa, B.S., Cogliati, T., Satish, A.G., Bruford, E.A., and Friedman, J.S. (2013). Update on the Kelch-like (KLHL) gene family. Hum. Genomics 7, 1-7. https://doi.org/10.1186/1479-7364-7-1
- Di Fonzo, A., Dekker, M.C.J., Montagna, P., Baruzzi, A., Yonova, E.H., Guedes, L.C., Szczerbinska, A., Zhao, T., DubbelHulsman, L.O.M., de Graaff, E., et al. (2009). FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 72, 240-245. https://doi.org/10.1212/01.wnl.0000338144.10967.2b
- Duncan, R.N., Panahi, S., Piotrowski, T., and Dorsky, R.I. (2015). Identification of Wnt genes expressed in neural progenitor zones during zebrafish brain development. PLoS One 10, e0145810. https://doi.org/10.1371/journal.pone.0145810
- Ertzer, R., Muller, F., Hadzhiev, Y., Rathnam, S., Fischer, N., Rastegar, S., and Strahle, U. (2007). Cooperation of sonic hedgehog enhancers in midline expression. Dev. Biol. 301, 578-589. https://doi.org/10.1016/j.ydbio.2006.11.004
- Fearnley, J.M. and Lees, A.J. (1991). Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain 114, 2283-2301. https://doi.org/10.1093/brain/114.5.2283
- Filippi, A., Mahler, J., Schweitzer, J., and Driever, W. (2010). Expression of the paralogous tyrosine hydroxylase encoding genes th1 and th2 reveals the full complement of dopaminergic and noradrenergic neurons in zebrafish larval and juvenile brain. J. Comp. Neurol. 518, 423-438. https://doi.org/10.1002/cne.22213
- Forno, L.S. (1969). Concentric hyalin intraneuronal inclusions of Lewy type in the brains of elderly persons (50 incidental cases): relationship to parkinsonism. J. Am. Geriatr. Soc. 17, 557-575. https://doi.org/10.1111/j.1532-5415.1969.tb01316.x
- Galvin, J.E., Lee, V.M.Y., and Trojanowski, J.Q. (2001). Synucleinopathies: clinical and pathological implications. Arch. Neurol. 58, 186-190. https://doi.org/10.1001/archneur.58.2.186
- Gao, K., Deng, X., Zheng, W., Song, Z., Zhu, A., Xiu, X., and Deng, H. (2013). Genetic analysis of the FBXO42 gene in Chinese Han patients with Parkinson's disease. BMC Neurol. 13, 125. https://doi.org/10.1186/1471-2377-13-125
- Giasson, B.I., Jakes, R., Goedert, M., Duda, J.E., Leight, S., Trojanowski, J.Q., and Lee, V.M. (2000). A panel of epitope-specific antibodies detects protein domains distributed throughout human α-synuclein in lewy bodies of Parkinson's disease. J. Neurosci. Res. 59, 528-533. https://doi.org/10.1002/(SICI)1097-4547(20000215)59:4<528::AID-JNR8>3.0.CO;2-0
- Glinka, A., Wu, W., Delius, H., Monaghan, A.P., Blumenstock, C., and Niehrs, C. (1998). Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391, 357-362. https://doi.org/10.1038/34848
- Golbe, L.I., Di Iorio, G., Bonavita, V., Miller, D.C., and Duvoisin, R.C. (1990). A large kindred with autosomal dominant Parkinson's disease. Ann. Neurol. 27, 276-282. https://doi.org/10.1002/ana.410270309
- Guner, B. and Karlstrom, R.O. (2007). Cloning of zebrafish nkx6. 2 and a comprehensive analysis of the conserved transcriptional response to Hedgehog/Gli signaling in the zebrafish neural tube. Gene Expr. Patterns 7, 596-605. https://doi.org/10.1016/j.modgep.2007.01.002
- Hassler, R. (1938). Zur Pathologie der Paralysis agitans und des postenzephalitischen Parkinsonismus. J. Psychol. Neurol. 48, 387-476. German.
- Hegarty, S.V., Sullivan, A.M., and O'keeffe, G.W. (2013). Midbrain dopaminergic neurons: a review of the molecular circuitry that regulates their development. Dev. Biol. 379, 123-138. https://doi.org/10.1016/j.ydbio.2013.04.014
- Hill-Burns, E.M., Ross, O.A., Wissemann, W.T., Soto-Ortolaza, A.I., Zareparsi, S., Siuda, J., Lynch, T., Wszolek, Z.K., Silburn, P.A., Ritz, B., et al. (2016). Identification of genetic modifiers of age-at-onset for familial Parkinson's disease. Hum. Mol. Genet. 25, 3849-3862. https://doi.org/10.1093/hmg/ddw206
- Holzschuh, J., Hauptmann, G., and Driever, W. (2003). Genetic analysis of the roles of Hh, FGF8, and nodal signaling during catecholaminergic system development in the zebrafish brain. J. Neurosci. 23, 5507-5519. https://doi.org/10.1523/jneurosci.23-13-05507.2003
- Jacobs, F.M., van Erp, S., van der Linden, A.J., von Oerthel, L., Burbach, J.P.H., and Smidt, M.P. (2009). Pitx3 potentiates Nurr1 in dopamine neuron terminal differentiation through release of SMRT-mediated repression. Development 136, 531-540. https://doi.org/10.1242/dev.029769
- Jessell, T.M. (2000). Neuronal specification in the spinal cord: inductive signals and transcriptional codes. Nat. Rev. Genet. 1, 20-29. https://doi.org/10.1038/35049541
- Jung, J., Choi, I., Ro, H., Huh, T.L., Choe, J., and Rhee, M. (2020). march5 Governs the convergence and extension movement for organization of the telencephalon and diencephalon in zebrafish embryos. Mol. Cells 43, 76. https://doi.org/10.14348/molcells.2019.0210
- Kanehisa, M. and Sato, Y. (2020). KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 29, 28-35. https://doi.org/10.1002/pro.3711
- Klein, C. and Westenberger, A. (2012). Genetics of Parkinson's disease. Cold Spring Harb. Perspect. Med. 2, a008888. https://doi.org/10.1101/cshperspect.a008888
- Laale, H.W. (1977). The biology and use of zebrafish, Brachydanio rerio in fisheries research. A literature review. J. Fish Biol. 10, 121-173. https://doi.org/10.1111/j.1095-8649.1977.tb04049.x
- Lewis, J.L., Bonner, J., Modrell, M., Ragland, J.W., Moon, R.T., Dorsky, R.I., and Raible, D.W. (2004). Reiterated Wnt signaling during zebrafish neural crest development. Development 131, 1299-1308. https://doi.org/10.1242/dev.01007
- Liem, K.F., Jr., Tremml, G., Roelink, H., and Jessell, T.M. (1995). Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82, 969-979. https://doi.org/10.1016/0092-8674(95)90276-7
- Mesman, S., von Oerthel, L., and Smidt, M.P. (2014). Mesodiencephalic dopaminergic neuronal differentiation does not involve GLI2A-mediated SHH-signaling and is under the direct influence of canonical WNT signaling. PLoS One 9, e97926. https://doi.org/10.1371/journal.pone.0097926
- Moury, J.D. and Jacobson, A.G. (1990). The origins of neural crest cells in the axolotl. Dev. Biol. 141, 243-253. https://doi.org/10.1016/0012-1606(90)90380-2
- Nguyen, V.H., Schmid, B., Trout, J., Connors, S.A., Ekker, M., and Mullins, M.C. (1998). Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirlpathway of genes. Dev. Biol. 199, 93-110. https://doi.org/10.1006/dbio.1998.8927
- Okumura, F., Fujiki, Y., Oki, N., Osaki, K., Nishikimi, A., Fukui, Y., Nakatsukasa, K., and Kamura, T. (2020). Cul5-type ubiquitin ligase KLHDC1 contributes to the elimination of truncated SELENOS produced by failed UGA/Sec decoding. iScience 23, 100970. https://doi.org/10.1016/j.isci.2020.100970
- Park, H.C., Mehta, A., Richardson, J.S., and Appel, B. (2002). olig2 is required for zebrafish primary motor neuron and oligodendrocyte development. Dev. Biol. 248, 356-368. https://doi.org/10.1006/dbio.2002.0738
- Polymeropoulos, M.H., Higgins, J.J., Golbe, L.I., Johnson, W.G., Ide, S.E., Di Iorio, G., Sanges, G., Stenroos, E., Pho, L.T., Schaffer, A.A., et al. (1996). Mapping of a gene for Parkinson's disease to chromosome 4q21-q23. Science 274, 1197-1199. https://doi.org/10.1126/science.274.5290.1197
- Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., et al. (1997). Mutation in the α-synuclein gene identified in families with Parkinson's disease. Science 276, 2045-2047. https://doi.org/10.1126/science.276.5321.2045
- Russek-Blum, N., Gutnick, A., Nabel-Rosen, H., Blechman, J., Staudt, N., Dorsky, R.I., Houart, C., and Levkowitz, G. (2008). Dopaminergic neuronal cluster size is determined during early forebrain patterning. Development 135, 3401-3413. https://doi.org/10.1242/dev.024232
- Ryu, S.W., Chae, S.K., Lee, K.J., and Kim, E. (1999). Identification and characterization of human Fas associated factor 1, hFAF1. Biochem. Biophys. Res. Commun. 262, 388-394. https://doi.org/10.1006/bbrc.1999.1217
- Sherman, B.T. and Lempicki, R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44. https://doi.org/10.1038/nprot.2008.211
- Simeone, A., Di Salvio, M., Di Giovannantonio, L.G., Acampora, D., Omodei, D., and Tomasetti, C. (2011). The role of otx2 in adult mesencephalic-diencephalic dopaminergic neurons. Mol. Neurobiol. 43, 107-113. https://doi.org/10.1007/s12035-010-8148-y
- Smeets, W.J.A.J. and Reiner, A. (1994). Catecholamines in the CNS of vertebrates: current concepts of evolution and functional significance. In Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates, W.J.A.J. Smeets and A. Reiner, eds. (Cambridge: Cambridge University Press), pp. 463-481.
- Stigloher, C., Ninkovic, J., Laplante, M., Geling, A., Tannhauser, B., Topp, S., Kikuta, H., Becker, T.S., Houart, C., and Bally-Cuif, L. (2006). Segregation of telencephalic and eye-field identities inside the zebrafish forebrain territory is controlled by Rx3. Development 133, 2925-2935. https://doi.org/10.1242/dev.02450
- Sul, J.W., Park, M.Y., Shin, J.H., Kim, Y.R., Yoo, S.E., Kong, Y.Y., Kwon, K.S., Lee, Y.H., and Kim, E. (2013). Accumulation of the parkin substrate, FAF1, plays a key role in the dopaminergic neurodegeneration. Hum. Mol. Genet. 22, 1558-1573. https://doi.org/10.1093/hmg/ddt006
- TeSlaa, J.J., Keller, A.N., Nyholm, M.K., and Grinblat, Y. (2013). Zebrafish Zic2a and Zic2b regulate neural crest and craniofacial development. Dev. Biol. 380, 73-86. https://doi.org/10.1016/j.ydbio.2013.04.033
- Tofaris, G.K. and Spillantini, M.G. (2007). Physiological and pathological properties of α-synuclein. Cell. Mol. Life Sci. 64, 2194-2201. https://doi.org/10.1007/s00018-007-7217-5
- Trapnell, C., Pachter, L., and Salzberg, S.L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111. https://doi.org/10.1093/bioinformatics/btp120
- Villanueva, S., Glavic, A., Ruiz, P., and Mayor, R. (2002). Posteriorization by FGF, Wnt, and retinoic acid is required for neural crest induction. Dev. Biol. 241, 289-301. https://doi.org/10.1006/dbio.2001.0485
- Wakabayashi, K., Tanji, K., Mori, F., and Takahashi, H. (2007). The Lewy body in Parkinson's disease: molecules implicated in the formation and degradation of α-synuclein aggregates. Neuropathology 27, 494-506. https://doi.org/10.1111/j.1440-1789.2007.00803.x
- Werner, A., Iwasaki, S., McGourty, C.A., Medina-Ruiz, S., Teerikorpi, N., Fedrigo, I., Ingolia, N.T., and Rape, M. (2015). Cell-fate determination by ubiquitin-dependent regulation of translation. Nature 525, 523-527. https://doi.org/10.1038/nature14978
- Yu, C., Kim, B.S., and Kim, E. (2016). FAF1 mediates regulated necrosis through PARP1 activation upon oxidative stress leading to dopaminergic neurodegeneration. Cell Death Differ. 23, 1873-1885. https://doi.org/10.1038/cdd.2016.99