DOI QR코드

DOI QR Code

Evaluation of Polymer Glass Transition Temperature Using HP-DSC in Hydrogen Atmosphere

수소 환경하에서의 고압시차주사 열량계를 이용한 고분자재료의 유리전이온도 평가

  • KIM, DAEHO (Korea Research Institute of Standards and Science) ;
  • LEE, SANGHYUN (Korea Research Institute of Standards and Science)
  • Received : 2021.04.19
  • Accepted : 2021.04.27
  • Published : 2021.04.28

Abstract

Evaluation of the thermal properties of a polymer is important for application of hydrogen infrastructure. This study describes the process of measurement of the glass transition temperature using high-pressure differential scanning calorimeter (HP-DSC) in hydrogen condition. Pressure stability of HP-DSC was evaluated up to 8 MPa in hydrogen gas and temperature calibration was carried out in the range from -92℃ to 232℃ using the reference materials. Glass transition temperature of commercial EPDM polymer was measurued at 0.2, 2, 3, 5 MPa in hydrogen condition.

Keywords

Acknowledgement

본 연구는 한국표준과학연구원 '수소스테이션 신뢰성 평가기술 개발(21011088)' 과제의 지원을 받아 진행되었습니다.

References

  1. D. Y. Pyo, Y. H. Kim, and O. T. Lim, "A study on safety assessment of hydrogen station", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 6, 2019, pp. 499-504, doi: https://doi.org/10.7316/KHNES.2019.30.6.499.
  2. C. Chae, S. Kang, H. Kim, S. Chae, and Y. Kim, "Evaluation of influential factors of hydrogen fueling protocol by modeling and simulation", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 6, 2019 pp. 513-522, doi: https://doi.org/10.7316/KHNES.2019.30.6.513.
  3. D. H. Kim, S. H. Park, Y. J. Ku, P. J. Kim, and Y. S. Huh, "A study on analysis of operation data monitoring based on demonstration of hydrogen refueling station", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 6, 2019, pp. 505-512, doi: https://doi.org/10.7316/KHNES.2019.30.6.505.
  4. A. Dawson, M. Rides, and J. Nottay, "The effect of pressure on the thermal conductivity of polymer melts", Polymer Testing, Vol. 25, No. 2, 2006, pp. 268-275, doi: https://doi.org/10.1016/j.polymertesting.2005.10.001.
  5. J. Yamabe and S. Nishimura, "Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas", Int. J. Hydrogen Energy, Vol. 34, No. 4, 2009, pp. 1977-1989, doi: https://doi.org/10.1016/j.ijhydene.2008.11.105.
  6. J. Pionteck, "Determination of pressure dependence of polymer phase transitions by pVT analysis", Polymers, Vol. 10, No. 6, 2018, pp. 578, doi: https://doi.org/10.3390/polym10060578.
  7. M. Maciejewska and M. Zaborski, "Thermal analysis and mechanical methods applied to studying properties of SBR compounds containing ionic liquids", Polymer Testing, Vol. 61, 2017, pp. 349-363, doi: https://doi.org/10.1016/j.polymertesting.2017.05.041.
  8. W. N. dos Santos, J. A. de Sousa, and R. Gregorio Jr, "Thermal conductivity behaviour of polymers around glass transition and crystalline melting temperatures", Polymer Testing, Vol. 32, No. 5, 2013, pp. 987-994, doi: https://doi.org/10.1016/j.polymertesting.2013.05.007.
  9. N. C. Menon, A. M. Kruizenga, K. J. Alvine, C. San Marchi, A. Nissen, and K. Brooks, "Behaviour of polymers in high pressure environments as applicable to the hydrogen infrastructure", Proceedings of the ASME 2016 Pressure Vessels and Piping Conference. Volume 6B: Materials and Fabrication, 2016, pp. 1-16, doi: https://doi.org/10.1115/PVP2016-63713.
  10. G. W. H. Hohne, W. F. Hemminger, and H. J. Flammersheim, "Differential scanning calorimetry", Springer Science & Business Media, Germany, 2003.