DOI QR코드

DOI QR Code

전자저울을 이용한 고무에서 수소기체의 장입량 및 확산도 측정 기술 개발

Development of Measurement Technology for Uptake and Diffusivity of Hydrogen Gas in Rubbers by Electronic Balances

  • 정재갑 (한국표준과학연구원 수소에너지 소재연구팀) ;
  • 전상구 (한국표준과학연구원 수소에너지 소재연구팀) ;
  • 백운봉 (한국표준과학연구원 수소에너지 소재연구팀) ;
  • 남승훈 (한국표준과학연구원 수소에너지 소재연구팀)
  • JUNG, JAE KAP (Hydrogen Energy Materials Research Center, Korea Research Institute of Standards and Science) ;
  • JEON, SANG KOO (Hydrogen Energy Materials Research Center, Korea Research Institute of Standards and Science) ;
  • BAEK, UN BONG (Hydrogen Energy Materials Research Center, Korea Research Institute of Standards and Science) ;
  • NAHM, SEUNG HOON (Hydrogen Energy Materials Research Center, Korea Research Institute of Standards and Science)
  • 투고 : 2021.01.22
  • 심사 : 2021.04.12
  • 발행 : 2021.04.28

초록

We developed an ex-situ technique to determine the uptake and diffusivitiy of hydrogen gas dissolved in rubber by employing electronic balances and diffusion analysis program. This method is applied to rubbers such as nitrile butadiene rubber (NBR), ethylene propylene diene monomer (EPDM), fluoroelastomer (FKM), which are used as hydrogen gas seals in hydrogen infrastructures. After exposure to hydrogen gas of high pressure at 35 MPa and 70 MPa, the uptake and diffusivity (D) of hydrogen is obtained together with measured uncertainty. NBR and EPDM shows two kinds of hydrogen diffusion bebaviors; the fast diffusion is due to the H2 adsorbed in the main polymer network, the slow diffusion is due to the H2 trapped in the carbon black filler. Whereas the FKM appears single diffusion behavior

키워드

과제정보

본 논문은 2021년도 한국표준과학연구원의 수소스테이션 신뢰성 평가기술 개발 재원으로 지원을 받아 수행된 연구입니다(한국표준과학연구원-2021-GP2021-0007).

참고문헌

  1. F. F. Dear and G. C. G. Skinner, "Mechanisms of hydrogen embrittlement in steels: discussion", Phil. Trans. R. Soc. A, Vol. 375, 2017, pp. 0032, doi: http://dx.doi.org/10.1098/rsta.2017.0032.
  2. I. M. Robertson, P. Sofronis, A. Nagao, M. L. Martin, S. Wang, D. W. Gross, and K. E. Nygren, "Hydrogen embrittlement understood", Metall. Mater. Trans. A, Vol. 46, 2015, pp. 2323-2341, doi: http://dx.doi.org/10.1007/s11661-015-2836-1.
  3. B. W. Kang and T. H. Lee, "An investigation of hazard distance in a series of hydrogen jet fire with the hyram tools", Trans Korean Hydrogen and New Energy Soci, Vol. 28, No. 2, 2017, pp. 166-173, doi: https://doi.org/10.7316/KHNES.2017.28.2.166.
  4. J. Yamabe, H. Fujiwara, and S. Nishimura, "Fracture analysis of rubber sealing material for high pressure hydrogen vessel", J. Environ. Eng., Vol. 6, No. 1, 2011, pp. 53-68, doi: https://doi.org/10.1299/jee.6.53.
  5. J. Yamabe, A. Koga, and S. Nishimura, "Failure behavior of rubber O-ring under cyclic exposure to high-pressure hydrogen gas", Eng. Fail. Anal., Vol. 35, 2013, pp. 193-205, doi: https://doi.org/10.1016/j.engfailanal.2013.01.034.
  6. A. Koga, K. Uchida, J. Yamabe, and S. Nishimura, "Evaluation on high-pressure hydrogen decompression failure of rubber O-ring using design of experiments", Int. J. Automot. Eng., Vol. 2, 2011, pp. 123-129, doi: https://doi.org/10.20485/jsaeijae.2.4_123.
  7. R. R. Barth, K. L. Simmons, and C. S. Marchi, "Polymers for hydrogen infrastructure and vehicle fuel systems: applications, properties, and gap analysis", Sandia Report, 2013.
  8. H. Fujiwara, H. Ono, and S. Nishimura, "Degradation behavior of acrylonitrile butadiene rubber after cyclic high-pressure hydrogen exposure", Int. J. Hydrog. Energy., Vol. 40, No. 4, 2015, pp. 2025-2034, doi: https://doi.org/10.1016/j.ijhydene.2014.11.106.
  9. S. Nishimura, "International symposium of hydrogen polymers team, hydrogenius", Kyushu University, Japan, 2017.
  10. J. Yamabe and S. Nishimura, "Influence of fillers on hydrogen penetration properties and blister fracture of rubber composites for O-ring exposed to high-pressure hydrogen gas", Int. J. Hydrog. Energy., Vol. 34, No. 4, 2009, pp. 1977-1989, doi: https://doi.org/10.1016/j.ijhydene.2008.11.105.
  11. American Society for Testing and Materials (ASTM). Standard test method for determining gas permeability characteristics of plastic film and sheeting. Philadelphia, PA: American Society for Testing and Materials (ASTM); 1982.
  12. T. Lu, R. Xu, B. Zhou, Y. Wang, F. Zhang, and P. Jiang, "Improved method for measuring the permeability of nanoporous material and its application to shale matrix with ultra-low permeability", Materials, Vol. 12, No. 9, 2019, pp. 1567, doi: https://doi.org/10.3390/ma12091567.
  13. S. Ding and W. T. Petuskey, "Solutions to Fick's second law of diffusion with a sinusoidal excitation", Solid State Ion., Vol. 109, No. 1-2, 1998, pp. 101-110, doi: https://doi.org/10.1016/S0167-2738(98)00103-9.
  14. A. Demarez, A. G. Hock, and F. A. Meunier, "Diffusion of hydrogen in mild steel", Acta. Metall., Vol. 2, No. 2, 1954, pp. 214-223, doi: https://doi.org/10.1016/0001-6160(54)90162-5.
  15. Working Group 1 of the Joint Committee for Guides in Metrology (JCGM/WG 1), "Evaluation of measurement data-guide to the expression of uncertainty in measurement", Joint Committee for Guides in Metrology, 2008.
  16. CSA ANSI CHMC 2:19, "Test methods for evaluating material compatibility in compressed hydrogen applications-polymers", CSA Group, 2019.