DOI QR코드

DOI QR Code

마그네틱 스위치 케이스 제품 분류를 위한 검사 시스템 개발

Development of inspection system for classification of magnetic switch case products

  • 투고 : 2021.04.13
  • 심사 : 2021.04.27
  • 발행 : 2021.04.30

초록

본 연구에서는 크기와 모양이 동일한 두 종류의 스타터 모터용 마그네틱 스위치 케이스 제품을 생산할 때 발생하는 분류 오류 문제를 해결하기 위한 지그(JIG) 및 시스템을 설계하였다. 지그의 구조는 제품의 정확한 검사를 위해 고안되었으며 작은 돌출부의 존재 차이를 가지는 두 부품의 분류를 위하여 다이얼게이지와 유도형 근접센서를 사용하여 검사 시스템을 설계하였다. 설계된 시스템의 성능평가를 통해 최적의 방안을 제안하였으며 이를 통해 공정상에서 발생하는 분류 불량률을 1%이하로 감소시켰다.

In this study, a JIG and a system were designed to solve the classification error problem of two types of magnetic switch case products for starter motors of the same size and shape. The structure of the jig is designed for accurate inspection of the product. The difference between the two products is divided into products with protrusions and products without. For classification of the two products, an inspection system was designed using a dial gauge and an inductive proximity sensor. An optimal method was proposed through performance evaluation by two sensors. As a result, both methods greatly reduced the defect rate of classification errors occurring in the process.

키워드

과제정보

본 연구는 자동차 부품을 생산하는 D사의 현장에 직접 설치하여 진행되었음. 이를 위해 협조해 준 D사의 품질 관리 담당자와 실험을 보조해 준 김진교학생에게 감사를 표함.

참고문헌

  1. Alejandro Magana, Silvia Gebel, Philipp Bauer, and Gunther Reinhart (2020), Knowledge-Based Service-Oriented System for the Automated Programming of Robot-Based Inspection Systems, 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), Sept. 8-11, pp. 1511-1518
  2. Baotong Chen, Jiafu Wan, Lei Shu, Peng Li, Mithun Mukherjee, and Boxing Yin (2018), Smart Factory of Industry 4.0: Key Technologies, Application Case, and Challenges, IEEE Access, 6, 6505-6519 https://doi.org/10.1109/access.2017.2783682
  3. Christian Brecher, Simon Storms, Christian Ecker, and Markus Obdenbusch, (2016) An Approach to Reduce Commissioning and Ramp-up time for Multi-variant Production in Automated Production Facilities, Procedia CIRP, Vol. 51, 128-133 https://doi.org/10.1016/j.procir.2016.05.027
  4. Elias N. Malamas, Euripides G.M. Petrakis, and Michalis Zervakis, (2017), Industrial robotics in factory automation: From the early stage to the Internet of Things, IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 29 Oct.-1 Nov. 2017, Beijing, China, 1-38
  5. Fatmir Azemi, Goran Simunovic, Roberto Lujic, Daniel Tokody, and Zoltan Rajnai (2019) The Use of Advanced Manufacturing Technology to Reduce Product Cost, Vol. 16,(7) 115-131
  6. Hamed Fazlollahtabar and Mostafa Zandieh (2010), Cost optimization in an AGV-based automated manufacturing system associated with product inspection and machine reliability, 2010 Second International Conference on Engineering System Management and Applications
  7. Julian Rub and Hanna Bahemia (2019) A Review of the Literature on Smart Factory Implementation, 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC)
  8. Mariagrazia Dotoli, Alexander Fay, Marek Miskowicz & Carla Seatzu, (2018) An overview of current technologies and emerging trends in factory automation, International Journal of Production Research, 57(15), 5047-506 https://doi.org/10.1080/00207543.2018.1510558
  9. Piotr Barosz, Grzegorz Golda, and Adrian Kampa, (2020), Efficiency Analysis of Manufacturing Line with Industrial Robots and Human Operators, Applied Sciences, http://doi:10.3390/app10082862
  10. Woo‑Kyun Jung, Dong‑Ryul Kim, Hyunsu Lee, Tae‑Hun Lee, Insoon Yang, Byeng D. Youn, Daniel Zontar, Matthias Brockmann, Christian Brecher, and Sung‑Hoon Ahn, (2021), Appropriate Smart Factory for SMEs: Concept, Application and Perspective, International Journal of Precision Engineering and Manufacturing (2021) 22, 201-215 https://doi.org/10.1007/s12541-020-00445-2