DOI QR코드

DOI QR Code

Case Studies on Fluid Extraction Induced Seismicity

유체 생산에 따른 유발지진 사례 분석

  • Seo, Eunjin (Department of Energy Systems Engineering, Seoul National University) ;
  • Yoo, Hwajung (Department of Energy Systems Engineering, Seoul National University) ;
  • Min, Ki-Bok (Department of Energy Systems Engineering, Seoul National University) ;
  • Yoon, Jeoung Seok (DynaFrax UG)
  • 서은진 (서울대학교 에너지시스템공학부) ;
  • 유화정 (서울대학교 에너지시스템공학부) ;
  • 민기복 (서울대학교 에너지시스템공학부) ;
  • 윤정석
  • Received : 2021.10.12
  • Accepted : 2021.11.25
  • Published : 2021.12.31

Abstract

Among human-induced seismicity, fluid production has been one of the causes. In this report, the mechanism that causes an earthquake due to a decrease in the fluid pressure inside the reservoir during fluid extraction is summarized. As case studies, the Lacq gas field in France, the Cerro Prieto geothermal field in Mexico, and the Groningen gas field in the Netherlands, which have become issue recently, were introduced. It is showed that fluid production, ground subsidence, and the presence of existing faults were closely related with the induced seismicity. Therefore, for the development of oil or gas field and geothermal field, it is important to investigate the presence of faults that may cause earthquakes in the reservoir, to monitor ground subsidence during production in real time, and to control production.

인간의 활동에 의해 발생하는 유발지진 중 유체의 주입뿐만 아니라 유체의 생산 또한 원인으로 알려져 있다. 본 기술보고에서는 유체를 생산할 때 저류층 내부의 공극압 감소로 인해 지진이 유발되는 메커니즘을 정리하였다. 유체 생산으로 인해 유발지진이 발생한 사례들 중 네덜란드 흐로닝언(Groningen) 가스전, 프랑스 라크(Lacq) 가스전 그리고 멕시코 세로 프리에토(Cerro Prieto) 지열 발전소를 소개하고 각 사례에 대한 기존 연구들을 정리하였다. 유체 생산 필드에서의 유체 생산량과 지반침하, 그리고 기존 단층의 유무가 유발지진과 큰 상관성을 보이는 것을 확인하였다. 따라서, 석유나 가스 생산 필드 그리고 지열 발전소 개발을 위해 저류층에서 유발지진의 발생 가능성을 내재하고 있는 단층 유무에 대한 정확한 탐사와 생산 중에 나타나는 지반침하를 실시간으로 모니터링하며 생산량을 조절하는 것이 중요하다.

Keywords

Acknowledgement

이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 고준위폐기물관리차세대혁신기술개발사업의 지원(과제번호: NRF-2021M2E3A2044264)을 받아 수행된 연구사업입니다.

References

  1. Baptie, B. and Luckett, R., 2018. The Newdigate Earthquake Sequence, 2018. British Geological Survey Open Report, OR/18/059. 20pp
  2. Bardainne, T., Dubos-Sallee, N., Senechal, G., Gaillot, P. and Perroud, H., 2008. Analysis of the induced seismicity of the Lacq gas field (Southwestern France) and model of deformation. Geophysical Journal International, 172(3): 1151-1162. https://doi.org/10.1111/j.1365-246X.2007.03705.x
  3. Bourne, S.J., Oates, S.J., van Elk, J. and Doornhof, D., 2014. A seismological model for earthquakes induced by fluid extraction from a subsurface reservoir. Journal of Geophysical Research: Solid Earth, 119(12): 8991-9015. https://doi.org/10.1002/2014jb011663
  4. Engelder, T. and Fischer, M.P., 1994. Influence of poroelastic behavior on the magnitude of minimum horizontal stress, S h in overpressured parts of sedimentary basins. Geology, 22(10): 949-952. https://doi.org/10.1130/0091-7613(1994)022<0949:IOPBOT>2.3.CO;2
  5. Foulger, G.R., Wilson, M.P., Gluyas, J.G., Julian, B.R. and Davies, R.J., 2018. Global review of human-induced earthquakes. Earth-Science Reviews, 178: 438-514. https://doi.org/10.1016/j.earscirev.2017.07.008
  6. Frez, J. and Gonzalez, J., 1991. Crustal Structure and Seismotectonics of Northern Baja California: Chapter 15: Part III. Regional Geophysics and Geology, pp. 261-283.
  7. Geertsma, J., 1973. Land subsidence above compacting oil and gas reservoirs. Journal of Petroleum technology, 25(06): 734-744. https://doi.org/10.2118/3730-PA
  8. Glowacka, E. and Nava, F., 1996. Major earthquakes in Mexicali Valley, Mexico, and fluid extraction at Cerro Prieto geothermal field. Bulletin of the Seismological Society of America, 86(1A): 93-105.
  9. Glowacka, E., Gonzalez, J. and Fabriol, H., 1999. Recent vertical deformation in Mexicali Valley and its relationship with tectonics, seismicity, and the exploitation of the Cerro Prieto geothermal field, Mexico. Pure and Applied Geophysics, 156(4): 591-614. https://doi.org/10.1007/s000240050314
  10. Glowacka, E., Gonzalez, J. and Nava, F.A., 2000. Subsidence in Cerro Prieto geothermal field, Baja California, Mexico, Proceedings World Geothermal Congress, pp. 591-596.
  11. Grasso, J.-R. and Wittlinger, G., 1990. Ten years of seismic monitoring over a gas field. Bulletin of the Seismological Society of America, 80(2): 450-473.
  12. Hettema, M., Papamichos, E. and Schutjens, P., 2002. Subsidence delay: field observations and analysis. Oil & Gas Science and Technology, 57(5): 443-458. https://doi.org/10.2516/ogst:2002029
  13. Hillis, R.R., 2001. Coupled changes in pore pressure and stress in oil fields and sedimentary basins. Petroleum Geoscience, 7(4): 419-425. https://doi.org/10.1144/petgeo.7.4.419
  14. HiQuake, The Human-Induced Earthquake Database(HiQuake), 2021.06., inducedearthquakes.org
  15. Majer, E., McEvilly, T. and Albores, A., 1980. Seismological studies at Cerro Prieto. Geothermics, 9(1-2): 79-88. https://doi.org/10.1016/0375-6505(80)90025-5
  16. Maury, V., Grassob, J.-R. and Wittlinger, G., 1992. Monitoring of subsidence and induced seismicity in the Lacq gas field (France): the consequences on gas production and field operation. Engineering Geology, 32(3): 123-135. https://doi.org/10.1016/0013-7952(92)90041-V
  17. NAM, 2021.06.21., www.nam.nl
  18. Pijnenburg, R.P.J., Verberne, B.A., Hangx, S.J.T. and Spiers, C.J., 2019. Inelastic Deformation of the Slochteren Sandstone: Stress-Strain Relations and Implications for Induced Seismicity in the Groningen Gas Field. Journal of Geophysical Research: Solid Earth, 124(5): 5254-5282. https://doi.org/10.1029/2019jb017366
  19. Segall, P., 1989. Earthquakes triggered by fluid extraction. Geology, 17(10): 942-946. https://doi.org/10.1130/0091-7613(1989)017<0942:ETBFE>2.3.CO;2
  20. Segall, P., 1992. Induced stresses due to fluid extraction from axisymmetric reservoirs. Pure and Applied Geophysics, 139(3-4): 535-560. https://doi.org/10.1007/BF00879950
  21. Segall, P. and Fitzgerald, S.D., 1998. A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics, 289(1-3): 117-128. https://doi.org/10.1016/S0040-1951(97)00311-9
  22. Segall, P., Grasso, J.-R. and Mossop, A., 1994. Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. Journal of Geophysical Research, 99(B8), pp. 15423-15438. https://doi.org/10.1029/94JB00989
  23. Teufel, L.W., Rhett, D.W. and Farrell, H.E., 1991. Effect of reservoir depletion and pore pressure drawdown on in situ stress and deformation in the Ekofisk field, North Sea, The 32nd US Symposium on Rock Mechanics (USRMS). ARMA-91-063.
  24. van Thienen-Visser, K. and Breunese, J.N., 2015. Induced seismicity of the Groningen gas field: History and recent developments. The Leading Edge, 34(6): 664-671. https://doi.org/10.1190/tle34060664.1
  25. Vlek, C. (2019). Rise and reduction of induced earthquakes in the Gorningen gas field, 1991-2018: statistical trends, social impacts, and policy change. Environmental earth sciences, 78(3), 59. https://doi.org/10.1007/s12665-019-8051-4