References
- Z. Zhang, A. Georgiadis, C. Cecati, "Wireless power transfer for smart industrial and home applications", IEEE Transactions on Industrial Electronics, Vol. 66, No. 5, pp. 3959-3962, May 2019. DOI: https://doi.org/10.1109/TIE.2018.2884307
- R. F. Xue, K. W. Cheng, M. Je, "High-efficiency wireless power transfer for biomedical implants by optimal resonant load transformation", IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 4, pp. 867-874, Apr. 2013. DOI: http://doi.org/10.1109/TCSI.2012.2209297
- S. Li, C. C. Mi, "Wireless power transfer for electric vehicle applications", IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, No. 1, pp. 4-17, March 2015. DOI: http://doi.org/10.1109/JESTPE.2014.2319453
- L. Xie, Y. Shi, Y. T. Hou, H. D. Sherali, "Making sensor networks immortal: an energy-renewal approach with wireless power transfer", IEEE/ACM Transactions on Networking, Vol. 20, No. 6, pp. 1748-1761, Dec. 2012. DOI: http://doi.org/10.1109/TNET.2012.2185831
- J. Kim, S. J. Park, T. Nguyen, M. Chu, J. D. Pegan, M. Khine, "Highly stretchable wrinkled gold thin film wires", Applied Physics Letters, Vol. 108, No. 6, pp. 1-10, Feb. 2016. DOI: https://doi.org/10.1063/1.4941439
- L. Cao, Z. Wang, Y. Liu, R. Shi, X. Wanga, J. Liu, "A general strategy for high performance stretchable conductors based on carbon nanotubes and silver nanowires", Royal Society of Chemistry Advances, Vol. 7, No. 33, pp. 20167-20171, Apr. 2017. DOI: https://doi.org/10.1039/C7RA02580G
- Y. R. Jeong, J. H. Kim, Z. Xie, Y. Xue, S. M. Won, et al., "A skin-attachable, stretchable integrated system based on liquid GaInSn for wireless human motion monitoring with multi-site sensing capabilities", NPG Asia Materials, Vol. 9, No. e443, pp. 1-8, Oct. 2017. DOI: https://doi.org/10.1038/am.2017.189
- Y. Choi, C. Hahn, J. W. Yoon, S. H. Song, P. Berini, "Extremely broadband, on-chip optical nonreciprocity enabled by mimicking nonlinear anti-adiabatic quantum jumps near exceptional points", Nature Communications, Vol. 8, No. 14154, pp. 1-9, Jan. 2017. DOI: https://doi.org/10.1038/ncomms14154
- B. Lv, J. Fu, B. Wu, R. Li, Q. Zeng, et al., "Unidirectional invisibility induced by parity-time symmetric circuit", Scientific Reports, Vol. 7, No. 40575, pp. 1-7, Jan. 2017. DOI: https://doi.org/10.1038/srep40575
- H. Zhao, L. Feng, "Parity-time symmetric photonics", National Science Review, Vol. 5, No. 2, pp. 183-199, March 2018. DOI: https://doi.org/10.1093/nsr/nwy011
- Y. Choi, J. W. Yoon, J. K. Hong, Y. Ryu, S. H. Song, "Direct observation of time-asymmetric breakdown of the standard adiabaticity around an exceptional point", Communications Physics, Vol. 3, No. 140, pp. 1-7, Aug. 2020. DOI: https://doi.org/10.1038/s42005-020-00409-y
- S. Assawaworrarit, X. Yu, S. Fan, "Robust wireless power transfer using a nonlinear parity-time-symmetric circuit", Nature, Vol. 546, pp. 387-390, June 2017. DOI: https://doi.org/10.1038/nature22404
- P. Y. Chen, M. Sakhdari, M. Hajizadegan, Q. Cui, M. M. C. Cheng, et al., "Generalized parity-time symmetry condition for enhanced sensor telemetry", Nature Electronics, Vol. 1, pp. 297-304, May 2018. DOI: https://doi.org/10.1038/s41928-018-0072-6
- J. Zhou, B. Zhang, W. Xiao, D. Qiu, Y. Chen, "Nonlinear Parity-Time-Symmetric Model for Constant Efficiency Wireless Power Transfer: Application to a Drone-in-Flight Wireless Charging Platform", IEEE Transactions on Industrial Electronics, Vol. 66, No. 5, pp. 4097-4107, May 2019. DOI: https://doi.org/10.1109/TIE.2018.2864515