DOI QR코드

DOI QR Code

Characteristics of carbon dioxide separation using amine functionalized carbon

아민기 개질 탄소를 이용한 이산화탄소 분리 특성

  • Received : 2021.02.01
  • Accepted : 2021.04.02
  • Published : 2021.04.30

Abstract

The development of a new sorbent for carbon dioxide depends on several factors, such as fast adsorption/absorption velocity, hydrophobicity, and lower regeneration temperature than commercial sorbent. In this study, aminosilane grafted activated carbon was synthesized to capture CO2. Methyltrimethoxysilane (MTMS) and 3-aminopropyl-triethoxysilane (APTES) were used as the grafting precursor of the amine functional group. The APTES grafting activated carbon showed higher sorption property than MTMS used one. The characteristics of the separation mechanism of carbon dioxide were examined by measuring the adsorption capacity according to temperature and carbon dioxide partial pressure. The absorption capacity of carbon dioxide was similar to amine grafting activated carbon and activated carbon at 25℃, but amine-grafted activated carbon was higher at 75℃. The amine functional group-grafted activated carbon showed higher absorption capacity than activated carbon with a 1% carbon dioxide partial pressure. Aminosilane grafting of activated carbon was chemically absorbed but also showed the characteristics of physical adsorption. The reforming activated carbon with an amine functional group grafted solid absorption/adsorption sorbent would significantly impact the material engineering industry and carbon dioxide adsorption process. The functionalized sorbent is a high-performance composite material. The developed sorbent may have applications in other industrial processes of absorption/adsorption and separation.

새로운 이산화탄소 분리용 흡착제 개발은 흡착속도, 소수성, 상용 흡착제보다 낮은 재생온도 등을 고려하여야 한다. 본 연구에서는 CO2를 분리하기 위하여 아미노실란이 그라프팅된 활성탄을 합성하였다. 아민 작용기 전구체로 methyltrimethoxysilane(MTMS) and 3-Aminopropyl-triethoxysilane(APTES)을 사용하여 그라프팅하였다. APTES를 그라프팅 활성탄이 MTMS을 사용한 것보다 우수한 흡착 특성을 나타내었다. 온도 및 이산화탄소 분압에 따른 흡착 특성으로 이산화탄소 분리 메커니즘을 규명하였다. 이산화탄소의 흡수/흡착능은 25 ℃에서 아민 그라프팅 활성탄과 활성탄과 비슷하지만 아민 그라프팅 활성탄이 75 ℃에서 더 높게 나타났다. 아민 작용기 그라프팅 활성탄은 이산화탄소 분압이 1 % 인 조건에서 활성탄보다 더 우수한 흡수능을 나타내었다. 아미노실란 그라프팅 활성탄은 물리적 흡착 특성을 지닌 화학적 흡수 메카니즘을 나타내었다. 아민 작용기가 부여되어 개질된 고체상 흡수/흡착제는 이산화탄소 흡착/흡수 공정만 아닌 재료 관련 산업에 큰 영향을 미칠 수 있는 고성능 복합 재료이며, 개발된 흡착제는 흡수/흡착 및 분리 관련 산업 공정에 적용될 수 있다.

Keywords

References

  1. Hannah Ritchie and Max Roser (2017) "CO and Greenhouse Gas Emissions". Published online: https://www.studocu.com/en-us/document/brigham-young-university-idaho/environmental-and-natural-resource-economics/other/co2-and-greenhouse-gas-emissions-our-world-in-data/9710989/view
  2. https://www.epa.gov/climateleadership
  3. Jane M.-F. Johnson, Alan J. Franzluebbers, Sharon Lachnicht Weyers, Donald C. Reicosky, "Agricultural opportunities to mitigate greenhouse gas emissions", Environmental Pollution 150, 107-124, 2007 DOI : https://pubag.nal.usda.gov/download/15176/PDF https://doi.org/10.1016/j.envpol.2007.06.030
  4. H. He, W. Li, M. Zhong, D. Konkolewicz, D. Wu, K. Yaccato, T. Rappold, G. Sugar, N.E. David, K. Matyjaszewski, "Carbon black functionalized with hyperbranched polymers: synthesis, characterization, and application in reversible CO2 capture", Journal of Materials Chemistry A, 6, 2013, 6810-6821, DOI : https://doi.org/10.1039/c3ta10699c
  5. Q. B. Meng, G. S. Yang, Y. S. Lee, "Preparation of highly porous hypercrosslinked polystyrene adsorbents: Effects of hydrophilicity on the adsorption and microwave-assisted desorption behavior toward benzene", Micro. Mesoporous Mater., 181(15), 2013, DOI : https://doi.org/10.1016/j.micromeso.2013.07.027
  6. I. Bano, M. Arshad, "Climatic changes impact on water availability", Perspect. On Water Usage for Biofuels Production, 2018, DOI : https://doi.org/10.1007/978-3-319-66408-8_2
  7. Douglas Aaron, Costas Tsouris, "Separation of 2 from Flue Gas: A Review', Separation Science and Technology, 40(1-3), 321-348, 2005 DOI : https://doi.org/10.1081/SS-200042244
  8. Hong-Cai Zhou, Jeffrey R. Long, and Omar M. Yaghi, "Introduction to Metal-Organic Frameworks", Chem. Rev., 112(2), 673-674, 2012 DOI : https://doi.org/10.1021/cr300014x
  9. World of Carbon - Interactive Nano-visulisation in Science & Engineering Education (IN-VSEE), https://web.archive.org/web/20081005162616/http://invsee.asu.edu/nmodules/Carbonmod/point.html
  10. Nouha Horria, Eloy S. Sanz-Perez, Amaya Arencibia, Raul Sanz, Najoua Frini-Srasra, Ezzeddine Srasra, " Amine grafting of acid-activated bentonite for carbon dioxide capture", Applied Clay Science, 180, 105195, 2019 DOI : https://doi.org/10.1016/j.clay.2019.105195
  11. R. K. Srivastava, W. Jozewicz, "Flue Gas Desulfurization: The State of the Art", J. Air & Waste Manage. Assoc. 51, 1676-1688, 2001, DOI :http://dx.doi.org/10.1080/10473289.2001.10464387
  12. Margandan Bhagiyalakshmi, Lee Ji Yun, Ramani Anuradha, Hyun Tae Jang, "Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to 2 adsorption through TREN/TEPA grafting", Journal of Hazardous Materials, Journal of Hazardous Materials, 175(1-3), 928-938, 2010 DOI : https://doi.org/10.1016/j.jhazmat.2009.10.097
  13. Norio TSUBOKAWA, "Preparation and Properties of Polymer-grafted Carbon Nanotubes and Nanofibers", Polymer Journal, 37(9), 637-655, 2005 DOI : https://doi.org/10.1007/s11814-007-5037-9
  14. L.A. Darunte, K.S. Walton, D.S. Sholl, C.W. Jones, "CO2 capture via adsorption in amine-functionalized sorbents", Curr. Opin. Chem. Eng., 12, 82-90, 2016 DOI : https://doi.org/10.1295/polymj.37.637
  15. C. Chen, D.W. Park, W.S. Ahn, "Surface modification of a low cost bentonite for post-combustion CO2 capture", Appl. Surf. Sci., 283, 699-704, 2013 DOI : https://doi.org/10.1016/j.apsusc.2013.07.005
  16. Y. Kong, M. Fan, B. Dutcher, S. Cui, X. Shen, Y. Kong, A.G. Russell, P. McCurdy, "Dynamic capture of low-concentration CO2 on amine hybrid silsesquioxane aerogel", Chem. Eng. J., 283, 1059-1068, 2015 DOI : http://dx.doi.org/10.1016/j.clay.2015.07.044