References
- Chang CH, Chen KY, Young-Xu Y, Kurth T, Orav EJ, Yang PC, et al. 2008. The safety and efficacy of gefitinib versus platinum-based doublets chemotherapy as the first-line treatment for advanced non-small-cell lung cancer patients in East Asia: a meta-analysis. Lung Cancer 62: 242-252. https://doi.org/10.1016/j.lungcan.2008.03.001
- Li Y, Yu H, Han F, Wang M, Luo Y, Guo X. 2018. Biochanin A Induces S phase arrest and apoptosis in lung cancer cells. Biomed. Res. Int. 2018: 3545376.
- Zeng X, Li J, Peng L, Wang Y, Tan C, Chen G, et al. 2014. Economic outcomes of maintenance gefitinib for locally advanced/ metastatic non-small-cell lung cancer with unknown EGFR mutations: a semi-Markov model analysis. PLoS One 9: e88881. https://doi.org/10.1371/journal.pone.0088881
- Liu G, Pei F, Yang F, Li L, Amin AD, Liu S, et al. 2017. Role of autophagy and apoptosis in non-small-cell lung cancer. Int. J. Mol. Sci. 18: 367. https://doi.org/10.3390/ijms18020367
- Wang C, Cui C. 2019. Inhibition of lung cancer proliferation by wogonin is associated with activation of apoptosis and generation of reactive oxygen species. Balkan Med. J. 37: 29-33.
- Kawata T, Higashimori M, Itoh Y, Tomkinson H, Johnson MG, Tang W, et al. 2019. Gefitinib exposure and occurrence of interstitial lung disease in Japanese patients with non-small-cell lung cancer. Cancer Chemother. Pharmacol. 83: 849-858. https://doi.org/10.1007/s00280-019-03788-4
- Kitagawa C, Mori M, Ichiki M, Sukoh N, Kada A, Saito AM, et al. 2019. Gefitinib plus bevacizumab vs. gefitinib alone for EGFR mutant non-squamous non-small cell lung cancer. In Vivo 33: 477-482. https://doi.org/10.21873/invivo.11498
- Leonetti A, Sharma S, Minari R, Perego P, Giovannetti E, Tiseo M. 2019. Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer. Br. J. Cancer 121: 725-737. https://doi.org/10.1038/s41416-019-0573-8
- Ping W, Gao Y, Fan X, Li W, Deng Y, Fu X. 2018. MiR-181a contributes gefitinib resistance in non-small cell lung cancer cells by targeting GAS7. Biochem. Biophys. Res. Commun. 495: 2482-2489. https://doi.org/10.1016/j.bbrc.2017.12.096
- Shin SY, Yong Y, Kim CG, Lee YH, Lim Y. 2010. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in HeLa cells. Cancer Lett. 287: 231-239. https://doi.org/10.1016/j.canlet.2009.06.019
- Park BR, Lee SA, Moon SM, Kim CS. 2018. Anthricininduced caspasedependent apoptosis through IGF1R/PI3K/AKT pathway inhibition in A549 human non-small lung cancer cells. Oncol. Rep. 39: 2769-2776.
- Wang W, Gao W, Zhang L, Zhang D, Zhao Z, Bao Y. 2019. Deoxypodophyllotoxin inhibits cell viability and invasion by blocking the PI3K/Akt signaling pathway in human glioblastoma cells. Oncol. Rep. 41: 2453-2463.
- Yang L, Mashima T, Sato S, Mochizuki M, Sakamoto H, Yamori T, et al. 2003. Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res. 63: 831-837.
- Li YC, He SM, He ZX, Li M, Yang Y, Pang JX, et al. 2014. Plumbagin induces apoptotic and autophagic cell death through inhibition of the PI3K/Akt/mTOR pathway in human non-small cell lung cancer cells. Cancer Lett. 344: 239-259. https://doi.org/10.1016/j.canlet.2013.11.001
- Lee MH, Cho Y, Kim DH, Woo HJ, Yang JY, Kwon HJ, et al. 2016. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1. Am. J. Transl. Res. 8: 5246-5255.
- Lin F, Cao SB, Ma XS, Sun HX. 2017. Inhibition of casein kinase 2 blocks G2/M transition in early embryo mitosis but not in oocyte meiosis in mouse. J. Reprod. Dev. 63: 319-324. https://doi.org/10.1262/jrd.2016-064
- Shen X, Wu Z, Chen S, Chen Y, Xia J, Lv Y, et al. 2016. Induction of G2/M phase arrest and apoptosis by ZGDHU-1 in A549 and RERF-LC-MA lung cancer cells. Oncol. Lett. 12: 989-994. https://doi.org/10.3892/ol.2016.4697
- Kim E, Kim HJ, Cho S-S, Shim J-H, Yoon G. 2020. Isolation, semisynthesis, and molecular modeling of deoxypodophyllotoxin analogs for an anti-oral cancer agent. Bull. Korean Chem. Soc. 41: 472-475. https://doi.org/10.1002/bkcs.11979
- Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. 2007. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316: 1039-1043. https://doi.org/10.1126/science.1141478
- Oh HN, Lee MH, Kim E, Yoon G, Chae JI, Shim JH. 2019. Licochalcone B inhibits growth and induces apoptosis of human nonsmall-cell lung cancer cells by dual targeting of EGFR and MET. Phytomedicine 63: 153014. https://doi.org/10.1016/j.phymed.2019.153014
- Arulananda S, Do H, Musafer A, Mitchell P, Dobrovic A, John T. 2017. Combination osimertinib and gefitinib in C797S and T790M EGFR-Mutated non-small cell lung cancer. J. Thorac. Oncol. 12: 1728-1732. https://doi.org/10.1016/j.jtho.2017.08.006
- Xiang Y, Guo Z, Zhu P, Chen J, Huang Y. 2019. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med. 8: 1958-1975. https://doi.org/10.1002/cam4.2108
- Yi YW, You K, Bae EJ, Kwak SJ, Seong YS, Bae I. 2015. Dual inhibition of EGFR and MET induces synthetic lethality in triple-negative breast cancer cells through downregulation of ribosomal protein S6. Int. J. Oncol. 47: 122-132. https://doi.org/10.3892/ijo.2015.2982
- Tripathi SK, Rengasamy KRR, Biswal BK. 2020. Plumbagin engenders apoptosis in lung cancer cells via caspase-9 activation and targeting mitochondrial-mediated ROS induction. Arch. Pharm. Res. 43: 242-256. https://doi.org/10.1007/s12272-020-01221-6
- Khaw-On P, Pompimon W, Banjerdpongchai R. 2018. Apoptosis induction via ATM phosphorylation, cell cycle arrest, and ER stress by goniothalamin and chemodrugs combined effects on breast cancer-derived MDA-MB-231 cells. Biomed. Res. Int. 2018: 7049053.
- Mao XM, Zhou P, Li SY, Zhang XY, Shen JX, Chen QX, et al. 2019. Diosgenin suppresses cholangiocarcinoma cells via inducing cell cycle arrest and mitochondria-mediated apoptosis. Onco. Targets Ther. 12: 9093-9104. https://doi.org/10.2147/OTT.S226261
- Yang KM, Kim BM, Park JB. 2014. omega-Hydroxyundec-9-enoic acid induces apoptosis through ROS-mediated endoplasmic reticulum stress in non-small cell lung cancer cells. Biochem. Biophys. Res. Commun. 448: 267-273. https://doi.org/10.1016/j.bbrc.2014.04.111
- Zheng YZ, Cao ZG, Hu X, Shao ZM. 2014. The endoplasmic reticulum stress markers GRP78 and CHOP predict disease-free survival and responsiveness to chemotherapy in breast cancer. Breast Cancer Res. Treat. 145: 349-358. https://doi.org/10.1007/s10549-014-2967-x
- Tungjai M, Kantapan J, Bunmakat Y, Kothan S. 2015. Presented at the 2015 4th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME).
- Wang YR, Xu Y, Jiang ZZ, Guerram M, Wang B, Zhu X, et al. 2015. Deoxypodophyllotoxin induces G2/M cell cycle arrest and apoptosis in SGC-7901 cells and inhibits tumor growth in vivo. Molecules 20: 1661-1675. https://doi.org/10.3390/molecules20011661
- Wu M, Jiang Z, Duan H, Sun L, Zhang S, Chen M, et al. 2013. Deoxypodophyllotoxin triggers necroptosis in human non-small cell lung cancer NCI-H460 cells. Biomed. Pharmacother. 67: 701-706. https://doi.org/10.1016/j.biopha.2013.06.002
- Guerram M, Jiang ZZ, Sun L, Zhu X, Zhang LY. 2015. Antineoplastic effects of deoxypodophyllotoxin, a potent cytotoxic agent of plant origin, on glioblastoma U-87 MG and SF126 cells. Pharmacol. Rep. 67: 245-252. https://doi.org/10.1016/j.pharep.2014.10.003
- Chen Y, Zhao K, Liu F, Li Y, Zhong Z, Hong S, et al. 2018. Predicting antitumor effect of deoxypodophyllotoxin in NCI-H460 rumorbearing mice on the basis of In Vitro pharmacodynamics and a physiologically based pharmacokinetic-pharmacodynamic model. Drug Metab. Dispos. 46: 897-907. https://doi.org/10.1124/dmd.117.079830
- Yang Y, Chen Y, Zhong ZY, Zhang J, Li F, Jia LL, et al. 2014. Validated LC-MS/MS assay for quantitative determination of deoxypodophyllotoxin in rat plasma and its application in pharmacokinetic study. J. Pharm. Biomed. Anal. 88: 410-415. https://doi.org/10.1016/j.jpba.2013.09.027