References
- van der Maarel M, van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. 2002. Properties and applications of starchconverting enzymes of the α-amylase family. J. Biotechnol. 94: 137-155. https://doi.org/10.1016/S0168-1656(01)00407-2
- Richardson TH, Tan X, Frey G, Callen W, Cabell M, Lam D, et al. 2002. A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable α-amylase. J. Biol. Chem. 277: 26501-26507. https://doi.org/10.1074/jbc.M203183200
- Khemakhem B, Ben Ali M, Aghajari N, Juy M, Haser R, Bejar S. 2009. Engineering of the α-amylase from Geobacillus stearothermophilus US100 for detergent incorporation. Biotechnol. Bioeng. 102: 380-389. https://doi.org/10.1002/bit.22083
- Saito N. 1973. A thermophilic extracellular α-amylase from Bacillus licheniformis. Arch. Biochem. Biophys. 155: 290-298. https://doi.org/10.1016/0003-9861(73)90117-3
- Yuuki T, Nomura T, Tezuka H, Tsuboi A, Yamagata H, Tsukagoshi N, et al. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable α-amylase of Bacillus licheniformis: comparison of the amino acid sequences of three bacterial liquefying α-amylases deduced from the DNA sequences. J. Biochem. 98: 1147-1156. https://doi.org/10.1093/oxfordjournals.jbchem.a135381
- Violet M, Meunier JC. 1989. Kinetic study of the irreversible thermal denaturation of Bacillus licheniformis α-amylase. Biochem. J. 263: 665-670. https://doi.org/10.1042/bj2630665
- Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, et al. 2018. Biotechnology of extremely thermophilic archaea. FEMS Microbiol. Rev. 42: 543-578. https://doi.org/10.1093/femsre/fuy012
- Adams MW. 1993. Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu. Rev. Microbiol. 47: 627-658. https://doi.org/10.1146/annurev.mi.47.100193.003211
- Demirjian DC, Moris-Varas F, Cassidy CS. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144-151. https://doi.org/10.1016/S1367-5931(00)00183-6
- Laderman KA, Asada K, Uemori T, Mukai H, Taguchi Y, Kato I, et al. 1993. α-amylase from the hyperthermophilic archaebacterium Pyrococcus furiosus. Cloning and sequencing of the gene and expression in Escherichia coli. J. Biol. Chem. 268: 24402-24407. https://doi.org/10.1016/S0021-9258(20)80539-0
- Dong G, Vieille C, Savchenko A, Zeikus JG. 1997. Cloning, sequencing, and expression of the gene encoding extracellular α-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl. Environ. Microbiol. 63: 3569-3576. https://doi.org/10.1128/aem.63.9.3569-3576.1997
- Shen W. 2003. Expression of α-amylase from Pyrococcus furiosus in different host cells. Doctor thesis. Jiangnan University.
- Wang P, Wang P, Tian J, Yu X, Chang M, Chu X, et al. 2016. A new strategy to express the extracellular α-amylase from Pyrococcus furiosus in Bacillus amyloliquefaciens. Sci. Rep. 6: 22229. https://doi.org/10.1038/srep22229
- Harwood CR, Cranenburgh R. 2008. Bacillus protein secretion: an unfolding story. Trends Microbiol. 16: 73-79. https://doi.org/10.1016/j.tim.2007.12.001
- Wei Y, Wang R, Du L, Lu J, Huang K, Huang R. 2005. Secreted expression of synthesized hyperthermophilic α-amylase gene pfa in Pichia pastoris. J. Chin. Biotechnol. 25: 65-69. https://doi.org/10.3969/j.issn.1671-8135.2005.01.014
- Horwich AL. 2013. Chaperonin-mediated protein folding. J. Biol. Chem. 288: 23622-23632. https://doi.org/10.1074/jbc.X113.497321
- Hartl FU, Hayer-Hartl M. 2002. Protein folding - Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858. https://doi.org/10.1126/science.1068408
- Skjaerven L, Cuellar J, Martinez A, Valpuesta JM. 2015. Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett. 589: 2522-2532. https://doi.org/10.1016/j.febslet.2015.06.019
- Zako T, Murase Y, Iizuka R, Yoshida T, Kanzaki T, Ide N, et al. 2006. Localization of prefoldin interaction sites in the hyperthermophilic group II chaperonin and correlations between binding rate and protein transfer rate. J. Mol. Biol. 364: 110-120. https://doi.org/10.1016/j.jmb.2006.08.088
- Martin-Benito J, Boskovic J, Gomez-Puertas P, Carrascosa JL, Simons CT, Lewis SA, et al. 2002. Structure of eukaryotic prefoldin and of its complexes with unfolded actin and the cytosolic chaperonin CCT. EMBO J. 21: 6377-6386. https://doi.org/10.1093/emboj/cdf640
- Whitehead TA, Boonyaratanakornkit BB, Hollrigl V, Clark DS. 2007. A filamentous molecular chaperone of the prefoldin family from the deep-sea hyperthermophile Methanocaldococcus jannaschii. Protein Sci. 16: 626-634. https://doi.org/10.1110/ps.062599907
- Glover DJ, Clark DS. 2015. Oligomeric assembly is required for chaperone activity of the filamentous γ-prefoldin. FEBS J. 282: 2985-2997. https://doi.org/10.1111/febs.13341
- Jakob RP, Koch JR, Burmann BM, Schmidpeter PA, Hunkeler M, Hiller S, et al. 2015. Dimeric structure of the bacterial extracellular foldase PrsA. J. Biol. Chem. 290: 3278-3292. https://doi.org/10.1074/jbc.M114.622910
- Ideno A, Yoshida T, Iida T, Furutani M, Maruyama T. 2001. FK506-binding protein of the hyperthermophilic archaeum, Thermococcus sp. KS-1, a cold-shock-inducible peptidyl-prolyl cis-trans isomerase with activities to trap and refold denatured proteins. Biochem. J. 357: 465-471. https://doi.org/10.1042/bj3570465
- Maruyama T, Suzuki R, Furutani M. 2004. Archaeal peptidyl prolyl cis-trans isomerases (PPIases) update 2004. Front. Biosci. 9: 1680-1720. https://doi.org/10.2741/1361
- Peng S, Chu Z, Lu J, Li D, Wang Y, Yang S, et al. 2016. Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli. Cell Stress Chaperon. 21: 477-484. https://doi.org/10.1007/s12192-016-0675-7
- Linden A, Niehaus F, Antranikian G. 2000. Single-step purification of a recombinant thermostable α-amylase after solubilization of the enzyme from insoluble aggregates. J. Chromatogr. B. 737: 253-259. https://doi.org/10.1016/S0378-4347(99)00364-3
- Wang L, Zhou Q, Chen H, Chu Z, Lu J, Zhang Y, et al. 2007. Efficient solubilization, purification of recombinant extracellular α-amylase from Pyrococcus furiosus expressed as inclusion bodies in Escherichia coli. J. Ind. Microbiol. Biotechnol. 34: 187-192. https://doi.org/10.1007/s10295-006-0185-1
- Su Y, Liu C, Fang H, Zhang D. 2020. Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microb. Cell Fact. 19: 173. https://doi.org/10.1186/s12934-020-01436-8
- Zhang K, Su L, Wu J. 2020. Recent advances in recombinant protein production by Bacillus subtilis. Annu. Rev. Food Sci. Technol. 11: 295-318. https://doi.org/10.1146/annurev-food-032519-051750
- Zhang K, Su L, Wu J. 2018. Enhanced extracellular pullulanase production in Bacillus subtilis using protease-deficient strains and optimal feeding. Appl. Microbiol. Biotechnol. 102: 5089-5103. https://doi.org/10.1007/s00253-018-8965-x
- Zhang K, Duan X, Wu J. 2016. Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system. Sci. Rep-UK. 6: 27943. https://doi.org/10.1038/srep27943
- Wenzel M, Muller A, Siemann-Herzberg M, Altenbuchner J. 2011. Self-inducible Bacillus subtilis expression system for reliable and inexpensive protein production by high-cell-density fermentation. Appl. Environ. Microbiol. 77: 6419-6425. https://doi.org/10.1128/AEM.05219-11
- Anagnostopoulos C, Spizizen J. 1961. Requirements for transformation in Bacillus subtilis. J. Bacteriol. 81: 741-746. https://doi.org/10.1128/jb.81.5.741-746.1961
- Peters JM, Colavin A, Shi H, Czarny TL, Larson MH, Wong S, et al. 2016. A comprehensive, CRISPR-based functional analysis of essential genes in bacteria. Cell 165: 1493-1506. https://doi.org/10.1016/j.cell.2016.05.003
- Westers H, Westers L, Darmon E, van Dijl JM, Quax WJ, Zanen G. 2006. The CssRS two-component regulatory system controls a general secretion stress response in Bacillus subtilis. FEBS J. 273: 3816-3827. https://doi.org/10.1111/j.1742-4658.2006.05389.x
- Caspers M, Brockmeier U, Degering C, Eggert T, Freudl R. 2010. Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide. Appl. Microbiol. Biotechnol. 86: 1877-1885. https://doi.org/10.1007/s00253-009-2405-x
- Freudl R. 2018. Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Fact. 17: 52. https://doi.org/10.1186/s12934-018-0901-3
- Ohtaki A, Kida H, Miyata Y, Ide N, Yonezawa A, Arakawa T, et al. 2008. Structure and molecular dynamics simulation of archaeal prefoldin: the molecular mechanism for binding and recognition of nonnative substrate proteins. J. Mol. Biol. 376: 1130-1141. https://doi.org/10.1016/j.jmb.2007.12.010
- Brown I, Dafforn TR, Fryer PJ, Cox PW. 2013. Kinetic study of the thermal denaturation of a hyperthermostable extracellular α-amylase from Pyrococcus furiosus. BBA-Proteins Proteom. 1834: 2600-2605. https://doi.org/10.1016/j.bbapap.2013.09.008
- Beadle BM, Baase WA, Wilson DB, Gilkes NR, Shoichet BK. 1999. Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme. Biochemistry 38: 2570-2576. https://doi.org/10.1021/bi9824902
- Smith JD, Richardson NE, Robinson AS. 2005. Elevated expression temperature in a mesophilic host results in increased secretion of a hyperthermophilic enzyme and decreased cell stress. Biochim. Biophys. Acta 1752: 18-25. https://doi.org/10.1016/j.bbapap.2005.07.016
- Szilagyi A, Zavodszky P. 2000. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8: 493-504. https://doi.org/10.1016/S0969-2126(00)00133-7
- Zhang K. 2018. Modification of Bacillus subtilis strain, promoter optimization and high-level expression of pullulanase. Doctor thesis. Jiangnan University.