References
- Xingxing W, Jinzhou X, Yusheng J, Yingjie P, Yongjie W. 2018. Lactobacillus kefiranofaciens, the sole dominant and stable bacterial species, exhibits distinct morphotypes upon colonization in Tibetan kefir grains. Heliyon 4: e00649. https://doi.org/10.1016/j.heliyon.2018.e00649
- Cheirsilp B, Suksawang S, Yeesang J, Boonsawang P. 2018. Co-production of functional exopolysaccharides and lactic acid by Lactobacillus kefiranofaciens originated from fermented milk, kefir. J. Food Sci. Technol. 55: 331-340. https://doi.org/10.1007/s13197-017-2943-7
- Chen YP, Hsiao PJ, Hong WS, Dai TY, Chen MJ. 2012. Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J. Dairy Sci. 95: 63-74. https://doi.org/10.3168/jds.2011-4696
- Slattery C, Cotter PD, O'Toole PW. 2019. Analysis of health benefits conferred by Lactobacillus species from Kefir. Nutrients 11: 1252. https://doi.org/10.3390/nu11061252
- Sugawara T, Furuhashi T, Shibata K, Abe M, Kikuchi K, Arai M, Sakamoto K. 2019. Fermented product of rice with Lactobacillus kefiranofaciens induces anti-aging effects and heat stress tolerance in nematodes via DAF-16. Biosci. Biotechnol. Biochem. 83: 1484-1489. https://doi.org/10.1080/09168451.2019.1606696
- Ye S, Weitao G, Yajing P, Jinju W, Ping X, Yanping W. 2019. Supplementation with Lactobacillus kefiranofaciens ZW3 from Tibetan Kefir improves depression-like behavior in stressed mice by modulating the gut microbiota. Food Funct. 10: 925-937. https://doi.org/10.1039/c8fo02096e
- Dandy Y, Lilis N, Ratih DH, Dase H. 2020. In vitro characterization of lactic acidbacteria from indonesian kefir grains as probiotics with cholesterol-lowering effect. J. Microbiol. Biotechnol. 30: 726-732. https://doi.org/10.4014/jmb.1910.10028
- Duarte LS, Schoffer JN, Lorenzoni ASG, Rodrigues RC, Rodrigues E, Hertz PF. 2017. A new bioprocess for the production of prebiotic lactosucrose by an immobilized β-galactosidase. Process. Biochem. 55: 96-103. https://doi.org/10.1016/j.procbio.2017.01.015
- Ustok FI, Tari C, Harsa S. 2010.Biochemical and thermal properties of β-galactosidase enzymes produced by artisanal yoghurt cultures. Food Chem. 119: 1114-1120. https://doi.org/10.1016/j.foodchem.2009.08.022
- Harrington LK, Mayberry JF. 2008. A re-appraisal of lactose intolerance. Int. J. Clin. Pract 62: 1541-1546. https://doi.org/10.1111/j.1742-1241.2008.01834.x
- Sara CS, Eugenia AM, Jose AT, Ligia RR. 2018. New β-galactosidase producers with potential for prebiotic synthesis. Bioresour. Technol. 250: 131-139. https://doi.org/10.1016/j.biortech.2017.11.045
- Cardoso BB, Silverio SC, Abrunhosa L, Teixeira JA, Rodrigues LR. 2017. β-Galactosidase from Aspergillus lacticoffeatus: a promising biocatalyst for the synthesis of novel prebiotics. Int. J. Food Microbiol. 257: 67-74. https://doi.org/10.1016/j.ijfoodmicro.2017.06.013
- Pereira RA, Fernandez LR, Gonzalez SMI, Cerdan ME, Becerra M, Sanz AJ. 2012. Structural basis of specificity in tetrameric Kluyveromyces lactis β-galactosidase. J. Struct. Biol. 177: 392-401. https://doi.org/10.1016/j.jsb.2011.11.031
- Vera C, Guerrero C, Illanes A. 2011. Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: effect of pH, temperature, and galactose and glucose concentrations Carbohydr. Res. 346: 745-752. https://doi.org/10.1016/j.carres.2011.01.030
- Pawlak SA, Marta W, Tomasz PA, Kur J. 2014. A novel cold-active β-D-galactosidase with transglycosylation activity from the Antarctic Arthrobacter sp. 32cB: gene cloning, purification and characterization. Process Biochem. 49: 2122-2133. https://doi.org/10.1016/j.procbio.2014.09.018
- Nguyen TH, Splechtna B, Yamabhai M, Haltrich D, Peterbauer C. 2007. Cloning and expression of the β-galactosidase genes from Lactobacillus reuteri in Escherichia coli. J. Biotechnol. 129: 581-591. https://doi.org/10.1016/j.jbiotec.2007.01.034
- Xi H, Ning H, Yanping W. 2016. Cloning, purification and characterization of a heterodimeric β-galactosidase from Lactobacillus kefiranofaciens ZW3. J. Microbiol. Biotechnol. 26: 20-27. https://doi.org/10.4014/jmb.1507.07013
- Clarissa S, Kim IS, Michael GG. 2010. Heterologous expression of glycoside hydrolase family 2 and 42 β-galactosidases of lactic acid bacteria in Lactococcus lactis. Syst. Appl. Microbiol. 33: 300-307. https://doi.org/10.1016/j.syapm.2010.07.002
- Nguyen TH, Splechtna B, Krasteva S, Kneife W, Kulbe KD, Divne C, et al. 2007. Characterization and molecular cloning of a heterodimeric β-galactosidase from the probiotic strain Lactobacillus acidophilus R22. FEMS. Microbiol. Lett. 269: 136-144. https://doi.org/10.1111/j.1574-6968.2006.00614.x
- Nguyen TT, Nguyen HM, Geiger B, Mathiesen G, Eijsink VG, Peterbaue, CK, et al. 2015. Heterologous expression of a recombinant lactobacillal β-galactosidase in Lactobacillus plantarum: effect of different parameters on the sakacin P-based expression system. Microb. Cell Fact. 7: 14-30. https://doi.org/10.1186/1475-2859-7-14
- Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. 2016. Biomedical applications of nisin. J. Appl. Microbiol. 120: 1449-1465. https://doi.org/10.1111/jam.13033
- Maischberger T, Mierau I, Peterbauer CK, Hugenholtz J, Haltrich D. 2010. High-level expression of Lactobacillus β-galactosidases in Lactococcus lactis using the food-grade, nisin-controlled expression system NICE. J. Agric. Food Chem. 58: 2279-2287. https://doi.org/10.1021/jf902895g
- van de Guchte M, van der Vossen JM, Kok J, Venema G.1989. Construction of a lactococcal expression vector: expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55: 224-228. https://doi.org/10.1128/AEM.55.1.224-228.1989
- van der Vossen JM, van der Lelie D, Venema G. 1987. Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl. Environ. Microbiol. 53: 2452-2457. https://doi.org/10.1128/AEM.53.10.2452-2457.1987
- Dan X, Ri N, Jiufeng G, Teng L. 2014. Study on the construction of recombined plasmid pMG36e-lacc1 and the electroporation of Lactobacillus buchneri. Biomed. Mater. Eng. 24: 3855-61.
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
- Buyukkileci AO, Harsa S. 2004. Batch production of L (+)-lactic acid from whey by Lactobacillus casei (NRRL B-441). J. Chem. Technol. Biotechnol. 79: 1036-1040. https://doi.org/10.1002/jctb.1094
- Sander SVL, Bas JHK, Lubber D, Johannis PK. 2014. 1H NMR analysis of the lactose/β-galactosidase-derived galacto-oligosaccharide components of Vivinal GOS up to DP5. Carbohydr. Res. 400: 59-73. https://doi.org/10.1016/j.carres.2014.08.012
- Aaron G, Geoff WS, Andrew RB, Sandra EK, Sally LG. 2010. Recent advances refining galactooligosaccharide production from lactose. Food. Chem. 121: 307-318. https://doi.org/10.1016/j.foodchem.2009.12.063
- Collins JK, Thornton G, Sullivan GO. 1998. Selection of probiotic strains for human applications. Int. Dairy. J. 8: 487-90. https://doi.org/10.1016/S0958-6946(98)00073-9
- Fulu L, Yating Z, Wanjin Q, Duolong Z, Haijin X, Per EJS, et al. 2019. Restructured Lactococcus lactis strains with emergent properties constructed by a novel highly efficient screening system. Microb. Cell. Fact. 18: 198. https://doi.org/10.1186/s12934-019-1249-z
- Intaratrakul K, Nitisinprasert S, Nguyen TH, Haltrich D, Keawsompong S. 2017. Secretory expression of β-mannanase from Bacillus Circulans NT 6.7 in Lactobacillus plantarum. Protein. Expr. Purif. 139: 29-35. https://doi.org/10.1016/j.pep.2017.07.005
- Yuelan Z, Lufeng J, Teng L, Min W, Wenbo C, Yongzhan B, et al. 2015. Construction and immunogenicity of the recombinant Lactobacillus acidophilus pMG36e-E0-LA-5 of bovine viral diarrhea virus. J. Virol. Methods. 225: 70-75. https://doi.org/10.1016/j.jviromet.2015.09.007
- Landete JM. 2016. A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit. Rev. Biotechnol. 37: 296-308. https://doi.org/10.3109/07388551.2016.1144044
- Willem MV. 1999. Safe and sustainable systems for food - grade fermentations by genetically modified lactic acid bacteria. Int. Dairy J. 9: 3-10. https://doi.org/10.1016/S0958-6946(99)00038-2
- Jae MS, Ji WG, Pachiyappan K, Christopher F, Alexander HR, Yvonne LK. 2016. Biomedical applications of nisin. J. Appl. Microbiol. 120: 1449-1465. https://doi.org/10.1111/jam.13033
- Cotter PD, Hill C, Ross RP. 2005. Bacteriocins: developing innate immunity for food. Nat. Rev. Microbiol. 3: 777-788. https://doi.org/10.1038/nrmicro1273
- Qu P, Junmin Z, Lina L, Yanguang C, Fuquan H, Jinchuan L, et al. 2010. Functional identification of a putative β-galactosidase gene in the special lac gene cluster of Lactobacillus acidophilus. Currt. Microbiol. 60: 172-178. https://doi.org/10.1007/s00284-009-9521-9
- Corral JM, Banuelos O, Adrio JL, Velasco J. 2006. Cloning and characterization of a β-galactosidase encoding region in Lactobacillus coryniformis CECT 5711. Appl. Microbiol. Biotechnol. 73: 640-646. https://doi.org/10.1007/s00253-006-0510-7
- Liu GX, Kong J, Lu WW, Kong WT, Tian H, Tian XY, et al. 2011. β-Galactosidase with transgalactosylation activity from Lactobacillus fermentum K4. J. Dairy Sci. 94: 5811-5820. https://doi.org/10.3168/jds.2011-4479