DOI QR코드

DOI QR Code

데이터 트레이드 직무 모델링에 관한 연구

Designing Job Description of Data Trader

  • 엄혜미 (중앙대학교 지식경영학부)
  • Um, Hyemi (School of Knowledge-Based Management, Chung-Ang Univ.)
  • 투고 : 2021.03.13
  • 심사 : 2021.04.20
  • 발행 : 2021.04.28

초록

'데이터 경제(Data Economy)'의 기폭제 역할을 한 코로나시대를 맞이하여 모든 일상은 디지털 형태로 급속하게 전환되고 있다. 디지털 데이터의 양과 질적은 급속하게 증가하고 있다. 국내 데이터 산업은 다양한 데이터 인력이 필요하지만, 양질의 데이터 인력은 여전히 부족한 실정이다. 수요가 많은 데이터 인력은 개발 인력이지만, 데이터 산업의 부가가치를 높이기 위해서 데이터 비즈니스 인력이 필요하다. 데이터 비즈니스 인력 중에서 높은 핵심적인 가치를 창출하는 데이터 트레이드 매니저의 역할이 주목받고 있다. 본 연구는 데이터 트레이드 메니저의 직무 정의, 필요한 지식 및 기술, 양성 교육 과정에 필요한 교육 내용 등을 델파이 연구를 통해서 도출한다. 연구 결과의 유효성을 파악하기 위하여 전문가와 직업 수요자를 대상으로 데이터 트레이드 메니저의 직업 안착 가능성을 검증한다. 본 연구는 데이터 인력 양성에 근거가 되는 교육 모델의 이론적 근거로 활용될 수 있고, 향후 인력 양성 정책 수립에 활용될 수 있다.

The data economy' is growing rapidly with the corona era. The quantity and quality of digital data is increasing rapidly. The domestic data industry needs a variety of data manpower, but there is still a shortage of high-quality data manpower. The data manpower in high demand is the development manpower, but the data business manpower is needed to increase the added value of the data industry. The role of a data trade manager that creates high core value among data business personnel is attracting attention. This study derives the job definition of the data trade manager, the necessary knowledge and skills, and the educational content necessary for the training course through Delphi research. In order to validate the results of the research, the study try to verifies the role of data trade managers. This study can be used as a theoretical basis for an educational model that is the basis for training data manpower, and can be used to establish a manpower training policy in the future.

키워드

참고문헌

  1. Ministry of Science Technology & Information Communication, (2020). A Report on Demand in Data Education for New Job and New Curriculum.
  2. Han, S. W. (2020). A Study on Design of Data Literacy Model Based on Digital Humanities, Journal of the Korea Society for Information Management, 37(1), 179-195. DOI: https://doi.org/10.3743/KOSIM.2020.37.1.179
  3. Jo, W. S. (2014). Big Data Application and Scientist, Communications of the Korean Institute of Information Scientists and Engineers 32(1), 59-65
  4. Lee, N. (2015). A Data Exchange Model to Promote Entrepreneurial Activities in Data Industry : Benchmarking Financial Exchanges, Journal of the Korean Entrepreneurship Socieity, 10(2), 28-49. https://doi.org/10.24878/TKES.2015.10.2.28
  5. Lee, J. M. (2019). Re-approach to the Concept of Data Literacy and Its Application to Library Information Services, Journal of the Korean Society for Library and Information Science, 53(1), 159-176. DOI: http://dx.doi.org/10.4275/KSLIS.2019.53.1.159
  6. Yoo, S. (2018). A Diagnostic Analysis of LIS Curriculum from the Meta-literacy Perspective, Journal of the Korean Society for Library and Information Science, 52(2), 191-220. DOI: http://dx.doi.org/10.4275/KSLIS.2018.52.2.191
  7. Shin, S. Y. (2015). Suggestions of Big-Data Integration in Public Institutions for Supporting Start-up Businesses, Journal of the Korea Institute of Information and Communication Engineering 19(6), 1341 -1346. https://doi.org/10.6109/jkiice.2015.19.6.1341
  8. Korea Data Agency. (2021). Data Industry White Paper: KDATA
  9. Jo, Y. M. (2013). Big Data Issues, Journal of Korean Associastion for Regional Information Society, 16(3), 43-65.
  10. Kang, J. H. (2016). Study on the Current Status of Data Science Curriculum in Library and Information Science and its Direction, Journal of Korean Library and Information Science Society, 47(3), 343-363, DOI:http://dx.doi.org/10.16981/kliss.47.3.201609.343
  11. Jeon, B. J., & Kim, H. W. (2017). An Exploratory Study on the Sharing and Application of Public Open Big Data, Informatization Policy, 24(3), 27-41. https://doi.org/10.22693/NIAIP.2017.24.3.027
  12. Kim, J. U. (2013). The Case of Big Data in Financial Institution, The Magazine of the IEIE, 40(8), 49-54.
  13. Kim, H. J. (2017). Deep Learning City: A Big Data Analytics Framework for Smart Cities, Informatization Policy, 24(4), 79-92. https://doi.org/10.22693/NIAIP.2017.24.4.079
  14. Kwon, Y. O. (2013). Data Analytics in Education : Current and Future Directions, Journal of intelligence and information systems, 19(2), 87-100. DOI :http://dx.doi.org/10.13088/jiis.2013.19.2.087
  15. Park, H. K. (2020). A study on the professionalism of planning experts in the fields of culture, art and education : Focused on job analysis, 18(11), 13-18 https://doi.org/10.14400/jdc.2020.18.11.013
  16. Kim, S. H., Park H. & Kim, B. (2021). Impacts of Perceived Value and Trust on Intention to Continue Use of Individuals' Cloud Computing : The Perception of Value-based Adoption Model, Journal of Digital Convergence, 19(1), 77-88. https://doi.org/10.14400/JDC.2021.19.1.077
  17. Jung, S. (2019). A Case Study on Operation of Big Data Educational Program, Journal of Education & Culture, 25(5), 621-640. https://doi.org/10.24159/joec.2019.25.1.621