DOI QR코드

DOI QR Code

The Impact of Insurance Contract on Insurance Complaint Ratios through Text Analysis

  • Jeongkwon Seo (College of Business, Korea Advanced Institute of Science and Technology) ;
  • Woojin Yang (College of Business, Korea Advanced Institute of Science and Technology) ;
  • Hyejin Mun (College of Business, Korea Advanced Institute of Science and Technology) ;
  • Chul Ho Lee (College of Business, Korea Advanced Institute of Science and Technology)
  • Received : 2021.06.29
  • Accepted : 2021.09.27
  • Published : 2021.12.31

Abstract

The government-driven open data policies are on the rise to protect consumers from misunderstandings and monitor the companies. However, in contract-based industries such as insurance, the contract-inherent characteristics make information asymmetry between consumers and companies. Our paper focuses on insurance contracts where the contingency has high uncertainty of occurrence, and the clauses may incur high costs of reading. Given those contracts, we hypothesized that the contract's clear statement decreases customer dissatisfaction and lowers the number of complaints. To empirically support the claim, we collected customers' complaint documents of insurance companies and insurance contracts from 2005 until 2017. Our econometric models showed that clearer statements and words significantly reduce the complaints after controlling for firm-specific heterogeneity and time-specific heterogeneity. We identify that insurance companies' complaint ratio significantly differ depending on the insurance contract, including specific clauses and words.

Keywords

References

  1. Abraham, K. S. (1996). A theory of insurance contract interpretation. Michigan Law Review, 95(3), 531-569. https://doi.org/10.2307/1290161
  2. Andrew, N. M. (2019). 2018 complaint rankings: Accident & health: Auto insurance. State of Connecticut: Insurance Department.
  3. Berry, D. M. (2003). From contract drafting to software specification: Linguistic sources of ambiguity. A Handbook Version. Citeseer.
  4. Bird, B. (2006). NLTK: The natural language toolkit. Proceedings of the COLING/ACL Interactive Presentation Sessions, Association for Computational Linguistics, 69-72.
  5. Boardman, M. E. (2005). Contra proferentem: The allure of ambiguous boilerplate. Michgan Law Review., 104, 1105-1126.
  6. Britton, B. K. (1978). Methods & designs: Lexical ambiguity of words used in English text. Behavior Research Methods & Instrumentation, 10(1), 1-7. https://doi.org/10.3758/BF03205079
  7. Burton, S. (2018). The case for plain-language contracts want to do deals faster and increase customer satisfaction? Start by stripping out the legalese. Harvard Business Review, 96(1), 134-140.
  8. Carson, J. M., McCullough, K., and Russell, D. T. (2005). Complaint ratio and property-casualty insurer characteristics. Journal of Insurance Issues, 28(2), 151-166.
  9. Ceccato, M., Kiyavitskaya, N., Zeni, N., Mich, L., and Berry, D. M. (2004). Ambiguity identification and measurement in natural language texts. University of Trento, Technical Report DIT-04-111. (Unpublished)
  10. Coase, R. H. (1937). The nature of the firm: Origins, evolution, and development. Belknap Press.
  11. Cohen, A., and Siegelman, P. (2010). Testing for adverse selection in insurance markets. Journal of Risk and Insurance, 77(1), 39-84. https://doi.org/10.1111/j.1539-6975.2009.01337.x
  12. Doerpinghuas, H. I. (1991). An analysis of complaint data in the automobile insurance industry. The Journal of Risk and Insurance, 58(1), 120-127. https://doi.org/10.2307/3520052
  13. Einav, L., Finkelstein, A., Ryan, S. P., Schrimpf, P., and Cullen, M. R. (2013). Selection on moral hazard in health insurance. American Economic Review, 103(1), 178-219.
  14. Garrett. (1970). Does ambiguity complicate the perception of sentences? Advances in psycholinguistics. Amsterdam: North Holland Publishing.
  15. Grossman, S. F., and Hart, O. D. (1986). The costs and benefits of ownership: A theory of vertical and lateral integration. Journal of Political Economy, 94(4), 691-719. https://doi.org/10.1086/261404
  16. Hart, O. (1995). Firms, contract, and financial structure. Oxford University Press.
  17. Hart, O. (2017). Incomplete contract and control. American Economic Review, 107(7), 1731-52. https://doi.org/10.1257/aer.107.7.1731
  18. Hart, O., and Moore, J. (1990). Property rights and the nature of the firm. Journal of Political Economy, 98(6), 1119-58. https://doi.org/10.1086/261729
  19. Hindle, D., and Rooth, M. (1993). Structural ambiguity and lexical relations. Computational Linguistics, 19(1), 103-120.
  20. Karl, J. B., and Wells, B. (2016). Improving perceptions of the insurance industry: The influence of insurance professionals. Risk Management and Insurance Review, 19(1), 147-166. https://doi.org/10.1111/rmir.12058
  21. Kim, H., and Yang, S. J. (2019). A study on the consumer complaint of the insurance service-focused on the automobile insurance service. Financial Planning Review, 12(2), 1-33.
  22. Kim, J. (2012). The regulations on the mis-selling of insurance vehicles. Chungnam Law Review, 115-171.
  23. Knutsen, E. S. (2010). Auto insurance as social contract: Solving automobile insurance coverage disputes through a public regulatory framework. Alberta Law Review, 715-750.
  24. Krishnamurthy, R., and Awazu, Y. (2016). Liberating data for public value: The case of Data. gov. International Journal of Information Management, 36(4), 668-672. https://doi.org/10.1016/j.ijinfomgt.2016.03.002
  25. Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics, 19(2), 313-330.
  26. Massey, A. K. (2014). Identifying and classifying ambiguity for regulatory requirements. 2014 IEEE 22nd International Requirements Engineering Conference(RE).
  27. McKinsey. (2017, March). Digital disruption in insurance: Cutting through the noise. Digital McKinsey, https://www.mckinsey.com/~/media/mckinsey/industries/financial%20services/our%20insights/time%20for%20insurance%20companies%20to%20face%20digital%20reality/digital-disruption-in-insurance.ashx
  28. Ostrager, B. R., and Newman, T. R. (2018). Handbook on insurance coverage disputes (9th ed.). New York: Wolters Kluwer.
  29. Powell, L. (2017). Big data and regulation in the insurance industry. Working Paper.
  30. Singh, V. K., Mukherjee, M., and Mehta, G. K. (2011). Sentiment and mood analysis of weblogs using POS tagging based approach. International Conference on Contemporary Computing, IC3 2011: Contemporary Computing, 313-324.
  31. Spruit, M., and Ferati, D. (2020). Text mining business contract documents: Applied data science in Finance. International Journal of Business Intelligence Research, 11(2), 28-46. https://doi.org/10.4018/IJBIR.20200701.oa1
  32. Torbert, P. (2014). A study of the risks of contract ambiguity. coase-sandor institute for law & economics. Working Paper, No. 686.
  33. Wang, T., Kannan, K. N., and Ulmer, J. R. (2013). The association between the disclosure and the realization of information security risk factors. Information Systems Research, 24(2), 201-497. https://doi.org/10.1287/isre.1120.0437
  34. Wells, B. P., and Stafford, M. R. (1995). Service quality in the insurance industry. Journal of Insurance Regulation, 13(4), 462-477.
  35. World Bank Blogs. (2021, March). Digitalization and data can vastly improve public service delivery for citizens. https://blogs.worldbank.org/europeandcentralasia/digitalization-and-data-can-vastly-improve-public-service-delivery-citizens