DOI QR코드

DOI QR Code

Theoretical Grounding of Perceived Risk in Adoption of Mobile Payment System and Behavioural Intention

  • Bharti Ramtiyal (Department of Management Studies, Malaviya National Institute of Technology Jaipur) ;
  • Deepak Verma (Department of Management Studies Malaviya National Institute of Technology Jaipur Rajasthan) ;
  • Ajay Pal Singh Rathore (Department of Management Studies Malaviya National Institute of Technology Jaipur Rajasthan)
  • Received : 2021.06.30
  • Accepted : 2021.10.01
  • Published : 2021.12.31

Abstract

This study focuses on a better understanding of the importance of risk perception in adopting Mobile Payment Systems (MPS) by conducting a systematic literature review. From the social science field (using Scopus and Web of Science database) articles were selected. Overall, forty-four significant pieces were determined using a systematic methodology. In addition to providing a summary of the most used theories used to address perceived risk in MPS this paper also investigates the definition for the perceived risk in MPS literature. The study is performed through the identification of dominant theories used to explain perceived risk in the literature. The article gives a thematic analysis of theories and the relation of perceived risk with behavioural intention. As far as we know, this is the first effort of its kind to give a holistic, systematic literature review in light of perceived risk in MPS. Consequently, it is a crucial first step in establishing a solid theoretical framework involving the constructs of perceived risk and laying the groundwork for future research in this area.

Keywords

References

  1. Alalwan, A. A., Rana, N. P., Dwivedi, Y. K., and Algharabat, R. (2017). Social media in marketing: A review and analysis of the existing literature. Telematics and Informatics, 34(7), 1177-1190. doi:10.1016/j.tele.2017.05.008 
  2. Alcantara-Pilar, J. M., Del Barrio-Garcia, S., and Porcu, L. (2013). A cross-cultural analysis of the effect of language on perceived risk online. Computers in Human Behavior, 29(3), 596-603. doi:10.1016/j.chb.2012.10.021 
  3. Bagozzi, R. (1992). The self-regulation of attitudes, intentions, and behavior. Social Psychology Quarterly, 55(2), 178-204.  https://doi.org/10.2307/2786945
  4. Bauer, H. H., Barnes, S. J., Reichardt, T., and Neumann, M. M. (2005). Driving consumer acceptance of mobile marketing: A theoretical framework and empirical study. Journal of Electronic Commerce Research, 6(3), 181-192. 
  5. Bauer, R. A. (1960a). Consumer behavior as risk taking. Conference of the American Marketing Association. 
  6. Bauer, R. A. (1960b). Consumer behavior as risk taking dynamic marking for a changing world. Chicago: American Marketing Association. 
  7. Bunduchi, R., Smart, A., Charles, K., McKee, L., and Azuara-Blanco, A. (2015). When innovation fails: An institutional perspective of the (non)adoption of boundary spanning IT innovation. Information and Management, 52(5), 563-576. doi:10.1016/j.im.2015.04.001 
  8. Busalim, A. H., and Hussin, A. R. C. (2016). Understanding social commerce: A systematic literature review and directions for further research. International Journal of Information Management, 36(6), 1075-1088. doi:10.1016/j.ijinfomgt.2016.06.005 
  9. Chen, C. F., and Chen, F. S. (2010). Experience quality, perceived value, satisfaction and behavioral intentions for heritage tourists. Tourism Management, 31(1), 29-35. doi:10.1016/j.tourman.2009.02.008 
  10. Chen, C. F., and Chen, F. S. (2010). Experience quality, perceived value, satisfaction and behavioral intentions for heritage tourists. Tourism Management, 31(1), 29-35. doi:10.1016/j.tourman.2009.02.008 
  11. Chen, L. D. (2008). A model of consumer acceptance of mobile payment. International Journal of Mobile Communications, 6(1), 32-52.  https://doi.org/10.1504/IJMC.2008.015997
  12. Cheng, Y. H., and Huang, T. Y. (2013). High speed rail passengers' mobile ticketing adoption. Transportation Research Part C: Emerging Technologies, 30, 143-160. doi:10.1016/j.trc.2013.02.001 
  13. Chhonker, M. S., Verma, D., and Kar, A. K. (2017). Review of technology adoption frameworks in mobile commerce. Procedia Computer Science, 122, 888-895. doi:10.1016/j.procs.2017.11.451 
  14. Chhonker, M. S., Verma, D., Kar, A. K., and Grover, P. (2018). M-commerce technology adoption. The Bottom Line, 31(3/4), 208-233. doi:10.1108/BL-04-2018-0020 
  15. Chung, K. C., and Holdsworth, D. K. (2012). Culture and behavioural intent to adopt mobile commerce among the Y Generation: Comparative analyses between Kazakhstan, Morocco and Singapore. Young Consumers, 13(3), 224-241. doi:10.1108/17473611211261629 
  16. Cocosila, M., and Trabelsi, H. (2016). Electronic commerce research and applications an integrated value-risk investigation of contactless mobile payments adoption. Electronic Commerce Research and Applications, 20, 159-170. doi:10.1016/j.elerap.2016.10.006 
  17. Cox, D. F. (1967). Risk taking and information handling in consume behavior. Harvard University. 
  18. Cunningham, S. M. (1967). The major dimensions of perceived risk. In Risk taking and information handling in consumer behavior (pp. 82-111). 
  19. Cunningham, S. M. (1967). The major dimensions of perceived risk. In Risk taking and information. 
  20. Dahlberg, T., Guo, J., and Ondrus, J. (2015). A critical review of mobile payment research. Electronic Commerce Research and Applications, 14(5), 265-284. doi:10.1016/j.elerap.2015.07.006 
  21. Dahlberg, T., Mallat, N., Ondrus, J., and Zmijewska, A. (2008). Past, present and future of mobile payments research: A literature review. Electronic Commerce Research and Applications, 7(2), 165-181. doi:10.1016/j.elerap.2007.02.001 
  22. Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. doi:10.1287/mnsc.35.8.982 
  23. De Sena Abrahao, R., Moriguchi, S. N., and Andrade, D. F. (2016). Intention of adoption of mobile payment: An analysis in the light of the Unified Theory of Acceptance and Use of Technology (UTAUT). RAI Revista de Administracao e Inovacao, 13(3), 221-230. doi:10.1016/j.rai.2016.06.003 
  24. Denyer, D., and Tranfield, D. (2009). Producing a systematic review. In The SAGE handbook of organizational research methods (pp. 671-689). doi:10.1080/03634528709378635 
  25. Dewey, A., and Drahota, A. (2016). Introduction to systematic reviews: Online learning module. Cochrane Training, http://Training.Cochrane.Org/Path/Introduction-Systematic-Reviewspathway/1 
  26. Dziopa, F., and Ahern, K. (2011). A systematic literature review of the applications of Q-technique and its methodology. Methodology, 7(2), 39-55. doi:10.1027/1614-2241/a000021 
  27. Farivar, S., Turel, O., and Yuan, Y. (2017). A trust-risk perspective on social commerce use: An examination of the biasing role of habit. Internet Research, 27(3), 586-607. doi:10.1108/IntR-06-2016-0175 
  28. Featherman, M. S., and Pavlou, P. A. (2003). Predicting e-services adoption: A perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474. doi:10.1016/S1071-5819(03)00111-3 
  29. Fishbein, M., and Ajzen, I. (1975). Belief, intention and behavior: An introduction to theory and research. Reading: Addison Wesley. 
  30. Gerhardt, P., Schilke, O., Wirtz, B. W., Schierz, P. G., Schilke, O., Wirtz, B. W., Gerhardt, P., Schilke, O., and Wirtz, B. W. (2010). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9(3), 209-216. doi:10.1016/j.elerap.2009.07.005 
  31. Gerpott, T. J., and Kornmeier, K. (2009). Determinants of customer acceptance of MPSs. International Journal of Electronic Finance, 3(1), 1. doi:10.1504/ijef.2009.024267 
  32. Ghezzi, A., Renga, F., Balocco, R., and Pescetto, P. (2010). Mobile payment applications: Offer state of the art in the Italian market. Info, 12(5), 3-22. doi:10.1108/14636691011071130 
  33. Gong, X., Zhang, K. Z. K., Chen, C., Cheung, C. M. K., and Lee, M. K. O. (2020). Transition from web to mobile payment services: The triple effects of status quo inertia. International Journal of Information Management, 50, 310-324. doi:10.1016/j.ijinfomgt.2019.08.006 
  34. Hedman, J., Tan, F. B., Holst, J., and Kjeldsen, M. (2017). Taxonomy of payments: A repertory grid analysis. International Journal of Bank Marketing, 35(1), 75-96. doi:10.1108/IJBM-12-2015-0187 
  35. Herrera, L. J., Guill, A., Liebana-Cabanillas, F., Herrera, L. J., Guillen, A., and Guill, A. (2016). Computers in human behavior variable selection for payment in social networks: Introducing the hy-index. Computers in Human Behavior, 56, 45-55. doi:10.1016/j.chb.2015.10.022 
  36. Hong, I. B., and Cha, H. S. (2013). The mediating role of consumer trust in an online merchant in predicting purchase intention. International Journal of Information Management, 33(6), 927-939. doi:10.1016/j.ijinfomgt.2013.08.007 
  37. Hsu, H. Y. S., and Kulviwat, S. (2006). An integrative framework of technology acceptance model and personalisation in mobile commerce. International Journal of Technology Marketing, 1(4), 393. doi:10.1504/IJTMKT.2006.010734 
  38. Hu, L., and Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1-55. doi:10.1080/10705519909540118 
  39. Huang, Y. C., Tsay, W. D., Huang, C. H., Lin, Y. H., and Lai, M. C. (2011). The influence factors of electronic bill presentment and payment : A case study of mobile phone bill. 2011 2nd International Conference on Artificial Intelligence, Management Science and Electronic Commerce(AIMSEC), 4844-4847. doi:10.1109/AIMSEC.2011.6010351 
  40. Isaac, O., Mutahar, A. M., Daud, N. M., Ramayah, T., and Aldholay, A. H. (2018). The effect of awareness and perceived risk on the technology acceptance model (TAM): Mobile banking in Yemen. International Journal of Services and Standards, 12(2), 180. doi:10.1504/ijss.2018.10012980 
  41. Johnson, V. L., Kiser, A., Washington, R., and Torres, R. (2018). Limitations to the rapid adoption of M-payment services: Understanding the impact of privacy risk on M-Payment services. Computers in Human Behavior, 79, 111-122. doi:10.1016/j.chb.2017.10.035 
  42. Johnson-George, C., and Swap, W. C. (1982). Measurement of specific interpersonal trust: Construction and validation of a scale to assess trust in a specific other. Journal of Personality and Social Psychology, 43(6), 1306-1317. doi:10.1037/0022-3514.43.6.1306 
  43. Karoubi, B., Chenavaz, R., and Paraschiv, C. (2016). Consumers' perceived risk and hold and use of payment instruments. Applied Economics, 48(14), 1317-1329. doi:10.1080/00036846.2015.1100249 
  44. Karsen, M., Chandra, Y. U., and Juwitasary, H. (2019). Technological factors of mobile payment: A systematic literature review. Procedia Computer Science, 157, 489-498. doi:10.1016/j.procs.2019.09.004 
  45. Khalilzadeh, J., Bulent, A., and Bilgihan, A. (2020). Computers in human behavior security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in Human Behavior, 70(2017), 460-474. doi:10.1016/j.chb.2017.01.001 
  46. Khalilzadeh, J., Ozturk, A. B., and Bilgihan, A. (2017). Security-related factors in extended UTAUT model for NFC based mobile payment in the restaurant industry. Computers in Human Behavior, 70(2017), 460-474. doi:10.1016/j.chb.2017.01.001 
  47. Kim, C., Mirusmonov, M., and Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310-322. doi:10.1016/j.chb.2009.10.013 
  48. Kim, D. J., Ferrin, D. L., and Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and their antecedents. Decision Support Systems, 44(2), 544-564. doi:10.1016/j.dss.2007.07.001 
  49. Koenig-Lewis, N., Marquet, M., Palmer, A., and Zhao, A. L. (2015). Enjoyment and social influence: Predicting mobile payment adoption. Service Industries Journal, 35(10), 537-554. doi:10.1080/02642069.2015.1043278 
  50. Laukkanen, T. (2016). Consumer adoption versus rejection decisions in seemingly similar service innovations: The case of the Internet and mobile banking. Journal of Business Research, 69(7), 2432-2439. doi:10.1016/j.jbusres.2016.01.013 
  51. Lebbe, S. S., Mohamad, A., and Sifat, I. M. (2019). Back to the future: Returning to silver-backed money in Sri Lanka. Journal of Islamic Accounting and Business Research, 10(1), 73-97. doi:10.1108/JIABR08-2015-0039 
  52. Liang, C. T. H., Alvarez, A. N., Juang, L. P., and Liang, M. X. (2007). The role of coping in the relationship between perceived racism and racism-related stress for Asian Americans: Gender differences. Journal of Counseling Psychology, 54(2), 132-141. doi:10.1037/0022-0167.54.2.132 
  53. Liebana-Cabanillas, F., Munoz-Leiva, F., and Sanchez-Fernandez, J. (2015). Behavioral model of younger users in m-payment systems. Journal of Organizational Computing and Electronic Commerce, 25(2), 169-190. doi:10.1080/10919392.2015.1033947 
  54. Liebana-Cabanillas, F., Sanchez-Fernandez, J., and Munoz-Leiva, F. (2014a). Antecedents of the adoption of the new MPSs: The moderating effect of age. Computers in Human Behavior, 35, 464-478. doi:10.1016/j.chb.2014.03.022 
  55. Liebana-Cabanillas, F., Sanchez-Fernandez, J., and Munoz-Leiva, F. (2014a). Antecedents of the adoption of the new MPSs: The moderating effect of age. Computers in Human Behavior, 35, 464-478. doi:10.1016/j.chb.2014.03.022 
  56. Liebana-Cabanillas, F., Sanchez-Fernandez, J., and Munoz-Leiva, F. (2014b). The moderating effect of experience in the adoption of mobile payment tools in Virtual Social Networks: The m-Payment Acceptance Model in Virtual Social Networks (MPAM-VSN). International Journal of Information Management, 34(2), 151-166. doi:10.1016/j.ijinfomgt.2013.12.006 
  57. Lim, N. (2003). Consumers' perceived risk: Sources versus consequences. Electronic Commerce Research and Applications, 2(3), 216-228. doi:10.1016/S1567-4223(03)00025-5 
  58. Lu, Y., Yang, S., Chau, P. Y. K., and Cao, Y. (2011). Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Information and Management, 48(8), 393-403. doi:10.1016/j.im.2011.09.006 
  59. Maestrini, V., Luzzini, D., Maccarrone, P., and Caniato, F. (2017). Supply chain performance measurement systems: A systematic review and research agenda. International Journal of Production Economics, 183, 299-315. doi:10.1016/j.ijpe.2016.11.005 
  60. Makanyeza, C. (2017). Determinants of consumers' intention to adopt mobile banking services in Zimbabwe. International Journal of Bank Marketing, 35(6), 997-1017. doi:10.1108/IJBM-07-2016-0099 
  61. Makki, A. M., Ozturk, A. B., and Singh, D. (2016). Role of risk, self-efficacy, and innovativeness on behavioral intentions for MPSs in the restaurant industry. Journal of Foodservice Business Research, 19(5), 454-473. doi:10.1080/15378020.2016.1188646 
  62. Mallat, N. (2007). Exploring consumer adoption of mobile payments-A qualitative study. Journal of Strategic Information Systems, 16(4), 413-432. doi:10.1016/j.jsis.2007.08.001 
  63. Mallat, N., Rossi, M., and Tuunainen, V. K. (2004). Mobile banking services. Communications of the ACM, 47(5), 42-46. doi:10.1145/986213.986236 
  64. Mitchell, V. (1992). Consumers' behaviour: Can perceived risk. Management Decision, 30(3), 26-31. 
  65. Olivero, N., and Lunt, P. (2004). Privacy versus willingness to disclose in e-commerce exchanges: The effect of risk awareness on the relative role of trust and control. Journal of Economic Psychology, 25(2), 243262. doi:10.1016/S0167-4870(02)00172-1 
  66. Ozkan, S., Bindusara, G., and Hackney, R. (2010). Facilitating the adoption of e-payment systems: Theoretical constructs and empirical analysis. Journal of Enterprise Information Management, 23(3), 305-325. doi:10.1108/17410391011036085 
  67. Ozturk, A. B. (2016). Customer acceptance of cashless payment systems in the hospitality industry. International Journal of Contemporary Hospitality Management, 28(4), 801-817. doi:10.1108/IJCHM-02-2015-0073
  68. Ozturk, A. B., Bilgihan, A., Salehi-Esfahani, S., and Hua, N. (2017). Understanding the mobile payment technology acceptance based on valence theory: A case of restaurant transactions. International Journal of Contemporary Hospitality Management, 29(8), 2027-2049. doi:10.1108/IJCHM-04-2016-0192 
  69. Peter, J. P., and Ryan, M. J. (1976). An investigation of perceived risk at the brand level. Journal of Marketing Research, 13(2), 184-188. doi:10.2307/3150856 
  70. Pham, T. T. T., and Ho, J. C. (2015). The effects of product-related, personal-related factors and attractiveness of alternatives on consumer adoption of NFC-based mobile payments. Technology in Society, 43, 159-172. doi:10.1016/j.techsoc.2015.05.004 
  71. Phong, N. D., Khoi, N. H., and Nhat-Hanh Le, A. (2018). Factors affecting mobile shopping: A Vietnamese perspective. Journal of Asian Business and Economic Studies, 25(2), 186-205. doi:10.1108/jabes-05-2018-0012 
  72. Phonthanukitithaworn, C., Sellitto, C., and Fong, M. W. L. (2016a). A comparative study of current and potential users of mobile payment services. SAGE Open, 6(4). doi:10.1177/2158244016675397 
  73. Phonthanukitithaworn, C., Sellitto, C., and Fong, M. W. L. (2016b). An investigation of mobile payment (m-payment) services in Thailand. Asia-Pacific Journal of Business Administration, 8(1), 37-54. doi:10.1108/APJBA-10-2014-0119 
  74. Schierz, P. G., Schilke, O., and Wirtz, B. W. (2010a). Understanding consumer acceptance of mobile payment services: An empirical analysis. Electronic Commerce Research and Applications, 9(3), 209-216. doi:10.1016/j.elerap.2009.07.005 
  75. Shemi, A. P., and Procter, C. (2018). E-commerce and entrepreneurship in SMEs: Case of myBot. Journal of Small Business and Enterprise Development, 25(3), 501-520. doi:10.1108/JSBED-03-2017-0088 
  76. Shin, D. H. (2009). Towards an understanding of the consumer acceptance of mobile wallet. Computers in Human Behavior, 25(6), 1343-1354. doi:10.1016/j.chb.2009.06.001 
  77. Slade, E., Williams, M., Dwivedi, Y., and Piercy, N. (2015). Exploring consumer adoption of proximity mobile payments. Journal of Strategic Marketing, 23(3), 209-223. doi:10.1080/0965254X.2014.914075 
  78. Tan, G. W. H., Ooi, K. B., Chong, S. C., and Hew, T. S. (2014). NFC mobile credit card: The next frontier of mobile payment? Telematics and Informatics, 31(2), 292-307. doi:10.1016/j.tele.2013.06.002 
  79. Thakur, R., and Srivastava, M. (2014). Adoption readiness, personal innovativeness, perceived risk and usage intention across customer groups for mobile payment services in India. Internet Research, 24(3), 369-392. doi:10.1108/IntR-12-2012-0244 
  80. Tiago, O., Manoj, T., Goncalo, B., Campos, F., Oliveira, T., Thomas, M., Baptista, G., and Campos, F. (2016). Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology computers in human behavior. Computers in Human Behavior, 61(August), 404-414. doi:10.1016/j.chb.2016.03.030 
  81. Vaeshney, U., and Vetter, R. (2002). Mobile commerce: Framework, applications and networking support. Mobile Network and Applications. 
  82. Venkatesh, V., and Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273-315. doi:10.1111/j.1540-5915.2008.00192.x 
  83. Venkatesh, V., Thong, J. Y. L., and Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.  https://doi.org/10.2307/41410412
  84. Williams, M. D. (2018). Social commerce and the mobile platform: Payment and security perceptions of potential users. Computers in Human Behavior, June, 1-12. doi:10.1016/j.chb.2018.06.005 
  85. Wu, J., Liu, L., and Huang, L. (2017). Consumer acceptance of mobile payment across time antecedents and moderating role of diffusion stages. Industrial Management and Data Systems, 117(8), 1761-1776. doi:10.1108/IMDS-08-2016-0312 
  86. Xiao, Y., and Watson, M. (2019). Guidance on conducting a systematic literature review. Journal of Planning Education and Research, 39(1), 93-112. doi:10.1177/0739456X17723971 
  87. Yang, Q., Pang, C., Liu, L., Yen, D. C., and Michael Tarn, J. (2015). Exploring consumer perceived risk and trust for online payments: An empirical study in China's younger generation. Computers in Human Behavior, 50, 9-24. doi:10.1016/j.chb.2015.03.058 
  88. Yang, S., Lu, Y., Gupta, S., Cao, Y., and Zhang, R. (2012). Mobile payment services adoption across time: An empirical study of the effects of behavioral beliefs, social influences, and personal traits. Computers in Human Behavior, 28(1), 129-142. doi:10.1016/j.chb.2011.08.019 
  89. Zhang, Y., Sun, J., Yang, Z., and Wang, Y. (2018) What makes people actually embrace or shun mobile payment: A cross-culture study. Mobile Information Systems, 2018, 7497545. doi:10.1155/2018/7497545