Abstract
As the information technology industry develops, various kinds of data are being created, and it is now essential to process them and use them in the industry. Analyzing and utilizing various digital data collected online and offline is a necessary process to provide an appropriate experience for customers in the industry. In order to create new businesses, products, and services, it is essential to use customer data collected in various ways to deeply understand potential customers' needs and analyze behavior patterns to capture hidden signals of desire. However, it is true that research using data analysis and UX methodology, which should be conducted in parallel for effective service development, is being conducted separately and that there is a lack of examples of use in the industry. In thiswork, we construct a single process by applying data analysis methods and UX methodologies. This study is important in that it is highly likely to be used because it applies methodologies that are actively used in practice. We conducted a survey on the topic to identify and cluster the associations between factors to establish customer classification and target customers. The research methods are as follows. First, we first conduct a factor, regression analysis to determine the association between factors in the happiness data survey. Groups are grouped according to the survey results and identify the relationship between 34 questions of psychological stability, family life, relational satisfaction, health, economic satisfaction, work satisfaction, daily life satisfaction, and residential environment satisfaction. Second, we classify clusters based on factors affecting happiness and extract the optimal number of clusters. Based on the results, we cross-analyzed the characteristics of each cluster. Third, forservice definition, analysis was conducted by correlating with keywords related to happiness. We leverage keyword analysis of the thumb trend to derive ideas based on the interest and associations of the keyword. We also collected approximately 11,000 news articles based on the top three keywords that are highly related to happiness, then derived issues between keywords through text mining analysis in SAS, and utilized them in defining services after ideas were conceived. Fourth, based on the characteristics identified through data analysis, we selected segmentation and targetingappropriate for service discovery. To this end, the characteristics of the factors were grouped and selected into four groups, and the profile was drawn up and the main target customers were selected. Fifth, based on the characteristics of the main target customers, interviewers were selected and the In-depthinterviews were conducted to discover the causes of happiness, causes of unhappiness, and needs for services. Sixth, we derive customer behavior patterns based on segment results and detailed interviews, and specify the objectives associated with the characteristics. Seventh, a typical persona using qualitative surveys and a persona using data were produced to analyze each characteristic and pros and cons by comparing the two personas. Existing market segmentation classifies customers based on purchasing factors, and UX methodology measures users' behavior variables to establish criteria and redefine users' classification. Utilizing these segment classification methods, applying the process of producinguser classification and persona in UX methodology will be able to utilize them as more accurate customer classification schemes. The significance of this study is summarized in two ways: First, the idea of using data to create a variety of services was linked to the UX methodology used to plan IT services by applying it in the hot topic era. Second, we further enhance user classification by applying segment analysis methods that are not currently used well in UX methodologies. To provide a consistent experience in creating a single service, from large to small, it is necessary to define customers with common goals. To this end, it is necessary to derive persona and persuade various stakeholders. Under these circumstances, designing a consistent experience from beginning to end, through fast and concrete user descriptions, would be a very effective way to produce a successful service.
정보기술 산업이 발전됨에 따라 다양한 종류의 데이터가 생겨나고 있고 이를 가공하여 산업에 활용하는 것이 필수인 시대가 되었다. 온 오프라인 상에서 수집된 다양한 디지털 데이터를 분석하여 활용하는것은 산업 내의 고객에게 적합한 경험을 제공하기 위해서 꼭 필요한 과정이다. 새로운 비즈니스, 제품, 서비스를 창출하기 위해서는다방면에서 수집된 고객 데이터를 활용하여잠재고객의 니즈를 깊게 파악하고 행동패턴을 분석하여 숨겨진 욕망의 신호를 잡아내는것이 필수이다. 그러나 효과적인 서비스 개발을 위해서 병행해서 진행되어야 할 데이터 분석, UX 방법론을 활용한 연구는 각각 따로 진행되고 있고 산업 내의 활용 예시가 부족한 것이 사실이다. 본 연구에서는 데이터 분석 방법과 UX 방법론을 응용하여 하나의 프로세스를 제작하였다. 행복을 주제로 진행된 설문조사에서 추출된 고객 데이터를 활용하여 고객의 특성을 파악하기 위한 데이터 분석을 진행하였다. 요인, 회귀분석을 실시하여 행복 데이터 설문의 요인 간의 연관 관계를 확인하였다. 그 다음 연관 관계를 군집을 분류하고 가장 최적의 군집 수를 추출하여분류하였다. 이러한 결과를 바탕으로 교차분석을 진행하여 군집 별로 인구통계학적 특성을 확인하였다. 세그먼트를 분류하기 전 서비스 정의를 하기 위하여 뉴스 기사 및 SNS 문장들을 바탕으로 텍스트 마이닝을 통해 주요 키워드를 바탕으로 아이디어를 도출하였고 이중에 가장 타당한 서비스를 선택하였다. 이러한 결과를 바탕으로 세그먼트및 목표 고객을 선정한 후 세그먼트의 특성대로 대상자를 선정하여 인터뷰를진행하였다. 그 후 특성 및 프로파일정보를 활용하여 페르소나를 제작하여고객의 행동과 최종 목표를 서술하였다. 일반적인페르소나와 데이터를 활용한 페르소나를 비교하여 각각의 특성을 비교 분석하였다. 본 연구를 통해 도출된 프로세스는 다변화되는 서비스의 변화 상황에서 적절한 타겟 고객의 정의 및 정확한 분류 체계로 나뉘어진 고객군을파악 할 수 있는 방법을 제시 한 것에 의의가 있다.