DOI QR코드

DOI QR Code

Basic reproduction number of African swine fever in wild boars (Sus scrofa) and its spatiotemporal heterogeneity in South Korea

  • Lim, Jun-Sik (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Kim, Eutteum (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University) ;
  • Ryu, Pan-Dong (College of Veterinary Medicine, Seoul National University) ;
  • Pak, Son-Il (College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University)
  • 투고 : 2021.07.10
  • 심사 : 2021.08.05
  • 발행 : 2021.09.30

초록

Background: African swine fever (ASF) is a hemorrhagic fever occurring in wild boars (Sus scrofa) and domestic pigs. The epidemic situation of ASF in South Korean wild boars has increased the risk of ASF in domestic pig farms. Although basic reproduction number (R0) can be applied for control policies, it is challenging to estimate the R0 for ASF in wild boars due to surveillance bias, lack of wild boar population data, and the effect of ASF-positive wild boar carcass on disease dynamics. Objectives: This study was undertaken to estimate the R0 of ASF in wild boars in South Korea, and subsequently analyze the spatiotemporal heterogeneity. Methods: We detected the local transmission clusters using the spatiotemporal clustering algorithm, which was modified to incorporate the effect of ASF-positive wild boar carcass. With the assumption of exponential growth, R0 was estimated for each cluster. The temporal change of the estimates and its association with the habitat suitability of wild boar were analyzed. Results: Totally, 22 local transmission clusters were detected, showing seasonal patterns occurring in winter and spring. Mean value of R0 of each cluster was 1.54. The estimates showed a temporal increasing trend and positive association with habitat suitability of wild boar. Conclusions: The disease dynamics among wild boars seems to have worsened over time. Thus, in areas with a high elevation and suitable for wild boars, practical methods need to be contrived to ratify the control policies for wild boars.

키워드

과제정보

The authors would like to thank Jin A Kim (Korea Disease Control and Prevention Agency) for comments on the study.

참고문헌

  1. Dixon LK, Stahl K, Jori F, Vial L, Pfeiffer DU. African swine fever epidemiology and control. Annu Rev Anim Biosci. 2020;8(1):221-246. https://doi.org/10.1146/annurev-animal-021419-083741
  2. Andraud M, Bougeard S, Chesnoiu T, Rose N. Spatiotemporal clustering and Random Forest models to identify risk factors of African swine fever outbreak in Romania in 2018-2019. Sci Rep. 2021;11(1):2098. https://doi.org/10.1038/s41598-021-81329-x
  3. Chenais E, Stahl K, Guberti V, Depner K. Identification of wild boar-habitat epidemiologic cycle in African swine fever epizootic. Emerg Infect Dis. 2018;24(4):810-812. https://doi.org/10.3201/eid2404.172127
  4. Vergne T, Guinat C, Pfeiffer DU. Undetected circulation of African swine fever in wild boar, Asia. Emerg Infect Dis. 2020;26(10):2480-2482. https://doi.org/10.3201/eid2610.200608
  5. Lim JS, Vergne T, Pak SI, Kim E. Modelling the spatial distribution of ASF-positive wild boar carcasses in South Korea using 2019-2020 national surveillance data. Animals (Basel). 2021;11(5):1208.
  6. Schulz K, Staubach C, Blome S, Viltrop A, Nurmoja I, Conraths FJ, et al. Analysis of Estonian surveillance in wild boar suggests a decline in the incidence of African swine fever. Sci Rep. 2019;9(1):8490. https://doi.org/10.1038/s41598-019-44890-0
  7. Jo YS, Gortazar C. African swine fever in wild boar: assessing interventions in South Korea. Transbound Emerg Dis. 2021. Epub ahead of print. doi: 10.1111/tbed.14106.
  8. Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the basic reproduction number (R0). Emerg Infect Dis. 2019;25(1):1-4. https://doi.org/10.3201/eid2501.171901
  9. Lim JS, Cho SI, Ryu S, Pak SI. Interpretation of the basic and effective reproduction number. J Prev Med Public Health. 2020;53(6):405-408. https://doi.org/10.3961/jpmph.20.288
  10. Haut ER, Pronovost PJ. Surveillance bias in outcomes reporting. JAMA. 2011;305(23):2462-2463. https://doi.org/10.1001/jama.2011.822
  11. Iglesias I, Munoz MJ, Montes F, Perez A, Gogin A, Kolbasov D, et al. Reproductive ratio for the local spread of African swine fever in wild boars in the Russian Federation. Transbound Emerg Dis. 2016;63(6):e237-e245. https://doi.org/10.1111/tbed.12337
  12. Pepin KM, Golnar AJ, Abdo Z, Podgorski T. Ecological drivers of African swine fever virus persistence in wild boar populations: insight for control. Ecol Evol. 2020;10(6):2846-2859. https://doi.org/10.1002/ece3.6100
  13. Probst C, Globig A, Knoll B, Conraths FJ, Depner K. Behaviour of free ranging wild boar towards their dead fellows: potential implications for the transmission of African swine fever. R Soc Open Sci. 2017;4(5):170054. https://doi.org/10.1098/rsos.170054
  14. Kulldorff M, Heffernan R, Hartman J, Assuncao R, Mostashari F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2005;2(3):e59. https://doi.org/10.1371/journal.pmed.0020059
  15. Tango T. Spatial scan statistics can be dangerous. Stat Methods Med Res. 2021;30(1):75-86. https://doi.org/10.1177/0962280220930562
  16. Birant D, Kut A. ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl Eng. 2007;60(1):208-221. https://doi.org/10.1016/j.datak.2006.01.013
  17. Gabriel C, Blome S, Malogolovkin A, Parilov S, Kolbasov D, Teifke JP, et al. Characterization of African swine fever virus Caucasus isolate in European wild boars. Emerg Infect Dis. 2011;17(12):2342-2345. https://doi.org/10.3201/eid1712.110430
  18. Iglesias I, Perez AM, Sanchez-Vizcaino JM, Munoz MJ, Martinez M, de la Torre A. Reproductive ratio for the local spread of highly pathogenic avian influenza in wild bird populations of Europe, 2005-2008. Epidemiol Infect. 2011;139(1):99-104. https://doi.org/10.1017/S0950268810001330
  19. Ministry of Environment. Standard Operation Procedures for African Swine Fever in Wild Boar. Sejong: Ministry of Environment; 2019.
  20. Blome S, Gabriel C, Dietze K, Breithaupt A, Beer M. High virulence of African swine fever virus Caucasus isolate in European wild boars of all ages. Emerg Infect Dis. 2012;18(4):708.
  21. Cho HK, Kim ET, Jung BS, Pak SI. A preliminary investigation into the decomposition rate of wild boar carcasses in forest habitats. J Prev Vet Med. 2021;45(1):44-52. https://doi.org/10.13041/jpvm.2021.45.1.44
  22. Korea National Park Service. National Park Wild Boar Habitat Survey Research. Wonju: Korea National Park Service; 2019.
  23. Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press; 1992.
  24. Kim ET, Pak SI. Species distribution modeling for wild boar (Sus scropa) in the Republic of Korea using MODIS data. J Prev Vet Med. 2020;44(2):89-95. https://doi.org/10.13041/jpvm.2020.44.2.89
  25. R Core Team. R: a Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2021.
  26. Morelle K, Podgorski T, Prevot C, Keuling O, Lehaire F, Lejeune P. Towards understanding wild boar Sus scrofa movement: a synthetic movement ecology approach. Mammal Rev. 2015;45(1):15-29. https://doi.org/10.1111/mam.12028
  27. O'Neill X, White A, Ruiz-Fons F, Gortazar C. Modelling the transmission and persistence of African swine fever in wild boar in contrasting European scenarios. Sci Rep. 2020;10(1):5895. https://doi.org/10.1038/s41598-020-62736-y
  28. Choe S, Cha RM, Yu DS, Kim KS, Song S, Choi SH, et al. Rapid spread of classical swine fever virus among South Korean wild boars in areas near the border with North Korea. Pathogens. 2020;9(4):244. https://doi.org/10.3390/pathogens9040244
  29. Yang A, Schlichting P, Wight B, Anderson WM, Chinn SM, Wilber MQ, et al. Effects of social structure and management on risk of disease establishment in wild pigs. J Anim Ecol. 2021;90(4):820-833. https://doi.org/10.1111/1365-2656.13412
  30. Loi F, Cappai S, Laddomada A, Feliziani F, Oggiano A, Franzoni G, et al. Mathematical approach to estimating the main epidemiological parameters of African swine fever in wild boar. Vaccines (Basel). 2020;8(3):8.
  31. Marcon A, Linden A, Satran P, Gervasi V, Licoppe A, Guberti V. R-0 estimation for the African swine fever epidemics in wild boar of Czech Republic and Belgium. Vet Sci. 2020;7(1):2. https://doi.org/10.3390/vetsci7010002
  32. Podgorski T, Borowik T, Lyjak M, Wozniakowski G. Spatial epidemiology of African swine fever: host, landscape and anthropogenic drivers of disease occurrence in wild boar. Prev Vet Med. 2020;177:104691. https://doi.org/10.1016/j.prevetmed.2019.104691
  33. National Institute of Biological Resources. 2017 Wildlife Survey. Incheon: National Institute of Biological Resources; 2017.
  34. Evans JD. Straightforward Statistics for the Behavioral Sciences. Belmont: Thomson Brooks/Cole Publishing Co.; 1996.
  35. Pepin KM, Golnar A, Podgorski T. Social structure defines spatial transmission of African swine fever in wild boar. J R Soc Interface. 2021;18(174):20200761. https://doi.org/10.1098/rsif.2020.0761
  36. Robert A, Kucharski AJ, Gastanaduy PA, Paul P, Funk S. Probabilistic reconstruction of measles transmission clusters from routinely collected surveillance data. J R Soc Interface. 2020;17(168):20200084. https://doi.org/10.1098/rsif.2020.0084
  37. Guzzetta G, Marques-Toledo CA, Rosa R, Teixeira M, Merler S. Quantifying the spatial spread of dengue in a non-endemic Brazilian metropolis via transmission chain reconstruction. Nat Commun. 2018;9(1):2837. https://doi.org/10.1038/s41467-018-05230-4
  38. Probst C, Gethmann J, Amendt J, Lutz L, Teifke JP, Conraths FJ. Estimating the postmortem interval of wild boar carcasses. Vet Sci. 2020;7(1):6. https://doi.org/10.3390/vetsci7010006
  39. Vergne T, Andraud M, Bonnet S, De Regge N, Desquesnes M, Fite J, et al. Mechanical transmission of African swine fever virus by Stomoxys calcitrans: insights from a mechanistic model. Transbound Emerg Dis. 2021;68(3):1541-1549. https://doi.org/10.1111/tbed.13824
  40. Probst C, Gethmann J, Amler S, Globig A, Knoll B, Conraths FJ. The potential role of scavengers in spreading African swine fever among wild boar. Sci Rep. 2019;9(1):11450. https://doi.org/10.1038/s41598-019-47623-5