DOI QR코드

DOI QR Code

Potential of polylactic-co-glycolic acid (PLGA) for delivery Jembrana disease DNA vaccine Model (pEGFP-C1-tat)

  • Unsunnidhal, Lalu (Department of Reproduction and Obstetrics, Faculty of Veterinary Medicine, University Gadjah Mada) ;
  • Wasito, Raden (Department of Pathology, Faculty of Veterinary Medicine, University Gadjah Mada) ;
  • Setyawan, Erif Maha Nugraha (Department of Reproduction and Obstetrics, Faculty of Veterinary Medicine, University Gadjah Mada) ;
  • Warsani, Ziana (Research Center of Biotechnology, University Gadjah Mada) ;
  • Kusumawati, Asmarani (Department of Reproduction and Obstetrics, Faculty of Veterinary Medicine, University Gadjah Mada)
  • Received : 2021.05.05
  • Accepted : 2021.08.03
  • Published : 2021.11.30

Abstract

Background: The development of a vaccine for Jembrana disease is needed to prevent losses in Indonesia's Bali cattle industry. A DNA vaccine model (pEGFP-C1-tat) that requires a functional delivery system will be developed. Polylactic-co-glycolic acid (PLGA) may have potential as a delivery system for the vaccine model. Objectives: This study aims to evaluate the in vitro potential of PLGA as a delivery system for pEGFP-C1-tat. Methods: Consensus and codon optimization for the tat gene was completed using a bioinformatic method, and the product was inserted into a pEGFP-C1 vector. Cloning of the pEGFP-C1-tat was successfully performed, and polymerase chain reaction (PCR) and restriction analysis confirmed DNA isolation. PLGA-pEGFP-C1-tat solutions were prepared for encapsulated formulation testing, physicochemical characterization, stability testing with DNase I, and cytotoxicity testing. The PLGA-pEGFP-C1-tat solutions were transfected in HeLa cells, and gene expression was observed by fluorescent microscopy and real-time PCR. Results: The successful acquisition of transformant bacteria was confirmed by PCR. The PLGA:DNA:polyvinyl alcohol ratio formulation with optimal encapsulation was 4%:0.5%:2%, physicochemical characterization of PLGA revealed a polydispersity index value of 0.246, a particle size of 925 nm, and a zeta potential value of -2.31 mV. PLGA succeeded in protecting pEGFP-C1-tat from enzymatic degradation, and the percentage viability from the cytotoxicity test of PLGA-pEGFP-C1-tat was 98.03%. The PLGA-pEGFP-C1-tat demonstrated luminescence of the EGFP-tat fusion protein and mRNA transcription was detected. Conclusions: PLGA has good potential as a delivery system for pEGFP-C1-tat.

Keywords

Acknowledgement

This research was supported by the Direktorat Riset dan Pengabdian Masyarakat and Lembaga Pengelolaan Dana Pendidikan Republik Indonesia (LPDP RI).

References

  1. Tanaya IWM. Bio-molecular study of Jembrana virus: as basic development of tissue culture vaccine. Bul Vet Udayana. 2016;8(2):187-202.
  2. Kusumawati A, Wanahari A, Astuti P, Kurniasih , Mappakaya BA, Wuryastuty H. Vaccine against Jembrana disease virus infection: a summary findings. Am J Immunol. 2015;11(3):68-73. https://doi.org/10.3844/ajisp.2015.68.73
  3. Kusumawati A, Wanahari TA, Putri RF, Untari T, Hartati S, Mappakaya BA, et al. Clinical and pathological perspectives of Jembrana disease virus infection: a review. Biosci Biotechnol Res Asia. 2014;11(3):1221-1225. https://doi.org/10.13005/bbra/1509
  4. Suwiti NK. The phenomenon Jembrana disease and bovine immunodeficiency viruses in Bali cattle. Bul Vet Udayana. 2009;1(1):21-25.
  5. Agustini NLP, Masa Tenaya IW, Supartika IK. Effication test of Jembrana disease vaccine. Bul Vet. 2009;27(86):1-16.
  6. Xu K, Ling ZY, Sun L, Xu Y, Bian C, He Y, et al. Broad humoral and cellular immunity elicited by a bivalent DNA vaccine encoding HA and NP genes from an H5N1 virus. Viral Immunol. 2011;24(1):45-56. https://doi.org/10.1089/vim.2010.0056
  7. Chen H, Wilcox G, Kertayadnya G, Wood C. Characterization of the Jembrana disease virus tat gene and the cis- and trans-regulatory elements in its long terminal repeats. J Virol. 1999;73(1):658-666. https://doi.org/10.1128/jvi.73.1.658-666.1999
  8. Mancebo HS, Lee G, Flygare J, Tomassini J, Luu P, Zhu Y, et al. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev. 1997;11(20):2633-2644. https://doi.org/10.1101/gad.11.20.2633
  9. Marshall NF, Peng J, Xie Z, Price DH. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem. 1996;271(43):27176-27183. https://doi.org/10.1074/jbc.271.43.27176
  10. Zhu Y, Pe'ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, et al. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 1997;11(20):2622-2632. https://doi.org/10.1101/gad.11.20.2622
  11. Cheng-Mayer C, Shioda T, Levy JA. Host range, replicative, and cytopathic properties of human immunodeficiency virus type 1 are determined by very few amino acid changes in tat and gp120. J Virol. 1991;65(12):6931-6941. https://doi.org/10.1128/jvi.65.12.6931-6941.1991
  12. Chen H, He J, Fong S, Wilcox G, Wood C. Jembrana disease virus Tat can regulate human immunodeficiency virus (HIV) long terminal repeat-directed gene expression and can substitute for HIV Tat in viral replication. J Virol. 2000;74(6):2703-2713. https://doi.org/10.1128/JVI.74.6.2703-2713.2000
  13. Smith CA, Calabro V, Frankel AD. An RNA-binding chameleon. Mol Cell. 2000;6(5):1067-1076. https://doi.org/10.1016/S1097-2765(00)00105-2
  14. Boyoglu S, Vig K, Pillai S, Rangari V, Dennis VA, Khazi F, et al. Enhanced delivery and expression of a nanoencapsulated DNA vaccine vector for respiratory syncytial virus. Nanomedicine. 2009;5(4):463-472. https://doi.org/10.1016/j.nano.2009.02.004
  15. Unsunnidhal L, Ishak J, Kusumawati A. Expression of gag-CA gene of Jembrana disease virus with cationic liposomes and chitosan nanoparticle delivery systems as DNA vaccine candidates. Trop Life Sci Res. 2019;30(3):15-36. https://doi.org/10.21315/tlsr2019.30.3.2
  16. Ishak J, Unsunnidhal L, Martien R, Kusumawati A. In vitro evaluation of chitosan-DNA plasmid complex encoding Jembrana disease virus env-tm protein as a vaccine candidate. J Vet Res (Pulawy). 2019;63(1):7-16. https://doi.org/10.2478/jvetres-2019-0018
  17. Zhao K, Li W, Huang T, Luo X, Chen G, Zhang Y, et al. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in PLGA nanoparticles. PLoS One. 2013;8(12):e82648. https://doi.org/10.1371/journal.pone.0082648
  18. Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, et al. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomedicine. 2011;6:2591-2605.
  19. Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577-5591. https://doi.org/10.2147/IJN.S36111
  20. Williams JA. Vector design for improved DNA vaccine efficacy, safety and production. Vaccines (Basel). 2013;1(3):225-249. https://doi.org/10.3390/vaccines1030225
  21. Zhao K, Zhang Y, Zhang X, Shi C, Wang X, Wang X, et al. Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int J Nanomedicine. 2014;9:4609-4619. https://doi.org/10.2147/IJN.S70633
  22. Huang T, Song X, Jing J, Zhao K, Shen Y, Zhang X, et al. Chitosan-DNA nanoparticles enhanced the immunogenicity of multivalent DNA vaccination on mice against Trueperella pyogenes infection. J Nanobiotechnology. 2018;16(1):8. https://doi.org/10.1186/s12951-018-0337-2
  23. Starodubova S, Kuzmenko YV, Latanova AA, Preobrazhenskaya OV, Karpov VL. Creation of DNA vaccine vector based on codon-optimized gene of rabies virus glycoprotein (G protein) with consensus amino acid sequence. Mol Biol. 2016;50(2):328-331. https://doi.org/10.1134/s0026893316020242
  24. Laddy DJ, Yan J, Corbitt N, Kobinger GP, Weiner DB. Immunogenicity of novel consensus-based DNA vaccines against avian influenza. Vaccine. 2007;25(16):2984-2989. https://doi.org/10.1016/j.vaccine.2007.01.063
  25. Obeng-Adjei N, Yan J, Choo D, Weiner D. Immunogenicity of novel consensus-based DNA vaccines against hepatitis B core antigen. J Immunol. 2011;186(1 Suppl):106.1.
  26. Porebski BT, Buckle AM. Consensus protein design. Protein Eng Des Sel. 2016;29(7):245-251. https://doi.org/10.1093/protein/gzw015
  27. Porebski BT, Nickson AA, Hoke DE, Hunter MR, Zhu L, McGowan S, et al. Structural and dynamic properties that govern the stability of an engineered fibronectin type III domain. Protein Eng Des Sel. 2015;28(3):67-78. https://doi.org/10.1093/protein/gzv002
  28. Haas J, Park EC, Seed B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol. 1996;6(3):315-324. https://doi.org/10.1016/S0960-9822(02)00482-7
  29. Zhao K, Li GX, Jin YY, Wei HX, Sun QS, Huang TT, et al. Preparation and immunological effectiveness of a Swine influenza DNA vaccine encapsulated in PLGA microspheres. J Microencapsul. 2010;27(2):178-186. https://doi.org/10.3109/02652040903059239
  30. Mohanraj VJ, Chen Y. Nanoparticles - a review. Trop J Pharm Res. 2006;5(1):561-573.
  31. Avadi MR, Sadeghi AM, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, et al. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine (Lond). 2010;6(1):58-63. https://doi.org/10.1016/j.nano.2009.04.007
  32. Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J. Nanopart. 2008;10(5):845-862. https://doi.org/10.1007/s11051-008-9357-4
  33. Ravi Kumar MN, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials. 2004;25(10):1771-1777. https://doi.org/10.1016/j.biomaterials.2003.08.069
  34. Lucio M, Carvalho A, Lopes I, Goncalves O, Barbara E, Oliveira M. Polymeric versus lipid nanoparticles: comparative study of nanoparticulate systems as indomethacin carriers. J Appl Solut Chem Model. 2015;4(2):95-109. https://doi.org/10.6000/1929-5030.2015.04.02.2
  35. Amir Kalvanagh P, Ebtekara M, Kokhaei P, Soleimanjahi H. Preparation and characterization of PLGA nanoparticles containing plasmid DNA encoding human IFN-lambda-1/IL-29. Iran J Pharm Res. 2019;18(1):156-167.
  36. Palocci C, Valletta A, Chronopoulou L, Donati L, Bramosanti M, Brasili E, et al. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. Plant Cell Rep. 2017;36(12):1917-1928. https://doi.org/10.1007/s00299-017-2206-0
  37. Xu Q, Crossley A, Czernuszka J. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres. J Pharm Sci. 2009;98(7):2377-2389. https://doi.org/10.1002/jps.21612
  38. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505-522. https://doi.org/10.1016/j.jconrel.2012.01.043