Acknowledgement
This research was supported by the Direktorat Riset dan Pengabdian Masyarakat and Lembaga Pengelolaan Dana Pendidikan Republik Indonesia (LPDP RI).
References
- Tanaya IWM. Bio-molecular study of Jembrana virus: as basic development of tissue culture vaccine. Bul Vet Udayana. 2016;8(2):187-202.
- Kusumawati A, Wanahari A, Astuti P, Kurniasih , Mappakaya BA, Wuryastuty H. Vaccine against Jembrana disease virus infection: a summary findings. Am J Immunol. 2015;11(3):68-73. https://doi.org/10.3844/ajisp.2015.68.73
- Kusumawati A, Wanahari TA, Putri RF, Untari T, Hartati S, Mappakaya BA, et al. Clinical and pathological perspectives of Jembrana disease virus infection: a review. Biosci Biotechnol Res Asia. 2014;11(3):1221-1225. https://doi.org/10.13005/bbra/1509
- Suwiti NK. The phenomenon Jembrana disease and bovine immunodeficiency viruses in Bali cattle. Bul Vet Udayana. 2009;1(1):21-25.
- Agustini NLP, Masa Tenaya IW, Supartika IK. Effication test of Jembrana disease vaccine. Bul Vet. 2009;27(86):1-16.
- Xu K, Ling ZY, Sun L, Xu Y, Bian C, He Y, et al. Broad humoral and cellular immunity elicited by a bivalent DNA vaccine encoding HA and NP genes from an H5N1 virus. Viral Immunol. 2011;24(1):45-56. https://doi.org/10.1089/vim.2010.0056
- Chen H, Wilcox G, Kertayadnya G, Wood C. Characterization of the Jembrana disease virus tat gene and the cis- and trans-regulatory elements in its long terminal repeats. J Virol. 1999;73(1):658-666. https://doi.org/10.1128/jvi.73.1.658-666.1999
- Mancebo HS, Lee G, Flygare J, Tomassini J, Luu P, Zhu Y, et al. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev. 1997;11(20):2633-2644. https://doi.org/10.1101/gad.11.20.2633
- Marshall NF, Peng J, Xie Z, Price DH. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J Biol Chem. 1996;271(43):27176-27183. https://doi.org/10.1074/jbc.271.43.27176
- Zhu Y, Pe'ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, et al. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev. 1997;11(20):2622-2632. https://doi.org/10.1101/gad.11.20.2622
- Cheng-Mayer C, Shioda T, Levy JA. Host range, replicative, and cytopathic properties of human immunodeficiency virus type 1 are determined by very few amino acid changes in tat and gp120. J Virol. 1991;65(12):6931-6941. https://doi.org/10.1128/jvi.65.12.6931-6941.1991
- Chen H, He J, Fong S, Wilcox G, Wood C. Jembrana disease virus Tat can regulate human immunodeficiency virus (HIV) long terminal repeat-directed gene expression and can substitute for HIV Tat in viral replication. J Virol. 2000;74(6):2703-2713. https://doi.org/10.1128/JVI.74.6.2703-2713.2000
- Smith CA, Calabro V, Frankel AD. An RNA-binding chameleon. Mol Cell. 2000;6(5):1067-1076. https://doi.org/10.1016/S1097-2765(00)00105-2
- Boyoglu S, Vig K, Pillai S, Rangari V, Dennis VA, Khazi F, et al. Enhanced delivery and expression of a nanoencapsulated DNA vaccine vector for respiratory syncytial virus. Nanomedicine. 2009;5(4):463-472. https://doi.org/10.1016/j.nano.2009.02.004
- Unsunnidhal L, Ishak J, Kusumawati A. Expression of gag-CA gene of Jembrana disease virus with cationic liposomes and chitosan nanoparticle delivery systems as DNA vaccine candidates. Trop Life Sci Res. 2019;30(3):15-36. https://doi.org/10.21315/tlsr2019.30.3.2
- Ishak J, Unsunnidhal L, Martien R, Kusumawati A. In vitro evaluation of chitosan-DNA plasmid complex encoding Jembrana disease virus env-tm protein as a vaccine candidate. J Vet Res (Pulawy). 2019;63(1):7-16. https://doi.org/10.2478/jvetres-2019-0018
- Zhao K, Li W, Huang T, Luo X, Chen G, Zhang Y, et al. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in PLGA nanoparticles. PLoS One. 2013;8(12):e82648. https://doi.org/10.1371/journal.pone.0082648
- Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, et al. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomedicine. 2011;6:2591-2605.
- Frohlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012;7:5577-5591. https://doi.org/10.2147/IJN.S36111
- Williams JA. Vector design for improved DNA vaccine efficacy, safety and production. Vaccines (Basel). 2013;1(3):225-249. https://doi.org/10.3390/vaccines1030225
- Zhao K, Zhang Y, Zhang X, Shi C, Wang X, Wang X, et al. Chitosan-coated poly(lactic-co-glycolic) acid nanoparticles as an efficient delivery system for Newcastle disease virus DNA vaccine. Int J Nanomedicine. 2014;9:4609-4619. https://doi.org/10.2147/IJN.S70633
- Huang T, Song X, Jing J, Zhao K, Shen Y, Zhang X, et al. Chitosan-DNA nanoparticles enhanced the immunogenicity of multivalent DNA vaccination on mice against Trueperella pyogenes infection. J Nanobiotechnology. 2018;16(1):8. https://doi.org/10.1186/s12951-018-0337-2
- Starodubova S, Kuzmenko YV, Latanova AA, Preobrazhenskaya OV, Karpov VL. Creation of DNA vaccine vector based on codon-optimized gene of rabies virus glycoprotein (G protein) with consensus amino acid sequence. Mol Biol. 2016;50(2):328-331. https://doi.org/10.1134/s0026893316020242
- Laddy DJ, Yan J, Corbitt N, Kobinger GP, Weiner DB. Immunogenicity of novel consensus-based DNA vaccines against avian influenza. Vaccine. 2007;25(16):2984-2989. https://doi.org/10.1016/j.vaccine.2007.01.063
- Obeng-Adjei N, Yan J, Choo D, Weiner D. Immunogenicity of novel consensus-based DNA vaccines against hepatitis B core antigen. J Immunol. 2011;186(1 Suppl):106.1.
- Porebski BT, Buckle AM. Consensus protein design. Protein Eng Des Sel. 2016;29(7):245-251. https://doi.org/10.1093/protein/gzw015
- Porebski BT, Nickson AA, Hoke DE, Hunter MR, Zhu L, McGowan S, et al. Structural and dynamic properties that govern the stability of an engineered fibronectin type III domain. Protein Eng Des Sel. 2015;28(3):67-78. https://doi.org/10.1093/protein/gzv002
- Haas J, Park EC, Seed B. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol. 1996;6(3):315-324. https://doi.org/10.1016/S0960-9822(02)00482-7
- Zhao K, Li GX, Jin YY, Wei HX, Sun QS, Huang TT, et al. Preparation and immunological effectiveness of a Swine influenza DNA vaccine encapsulated in PLGA microspheres. J Microencapsul. 2010;27(2):178-186. https://doi.org/10.3109/02652040903059239
- Mohanraj VJ, Chen Y. Nanoparticles - a review. Trop J Pharm Res. 2006;5(1):561-573.
- Avadi MR, Sadeghi AM, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, et al. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine (Lond). 2010;6(1):58-63. https://doi.org/10.1016/j.nano.2009.04.007
- Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J. Nanopart. 2008;10(5):845-862. https://doi.org/10.1007/s11051-008-9357-4
- Ravi Kumar MN, Bakowsky U, Lehr CM. Preparation and characterization of cationic PLGA nanospheres as DNA carriers. Biomaterials. 2004;25(10):1771-1777. https://doi.org/10.1016/j.biomaterials.2003.08.069
- Lucio M, Carvalho A, Lopes I, Goncalves O, Barbara E, Oliveira M. Polymeric versus lipid nanoparticles: comparative study of nanoparticulate systems as indomethacin carriers. J Appl Solut Chem Model. 2015;4(2):95-109. https://doi.org/10.6000/1929-5030.2015.04.02.2
- Amir Kalvanagh P, Ebtekara M, Kokhaei P, Soleimanjahi H. Preparation and characterization of PLGA nanoparticles containing plasmid DNA encoding human IFN-lambda-1/IL-29. Iran J Pharm Res. 2019;18(1):156-167.
- Palocci C, Valletta A, Chronopoulou L, Donati L, Bramosanti M, Brasili E, et al. Endocytic pathways involved in PLGA nanoparticle uptake by grapevine cells and role of cell wall and membrane in size selection. Plant Cell Rep. 2017;36(12):1917-1928. https://doi.org/10.1007/s00299-017-2206-0
- Xu Q, Crossley A, Czernuszka J. Preparation and characterization of negatively charged poly(lactic-co-glycolic acid) microspheres. J Pharm Sci. 2009;98(7):2377-2389. https://doi.org/10.1002/jps.21612
- Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505-522. https://doi.org/10.1016/j.jconrel.2012.01.043