DOI QR코드

DOI QR Code

Adsorption of Antibiotics on Serum Albumin Nanoparticle

혈청 알부민 나노입자를 이용한 항생제 흡착

  • Kim, Hyunji (Department of Chemical Engineering, Pukyong National University) ;
  • Lim, Sung In (Department of Chemical Engineering, Pukyong National University)
  • 김현지 (부경대학교 화학공학과) ;
  • 임성인 (부경대학교 화학공학과)
  • Received : 2021.02.05
  • Accepted : 2021.02.24
  • Published : 2021.03.31

Abstract

Antibiotics are compounds broadly used to treat patients with infectious diseases and to enhance productivity in agriculture, fisheries, and livestock industries. However, due to the overuse of antibiotics and their low biodegradability, a substantial amount of antibiotics is leaking into the sewer, subsequently resulting in pollution and the emergence of antibiotic-resistant bacteria. This study explores biodegradable serum albumin's potential as an adsorbent to remove antibiotics from water. Serum albumin is a natural blood protein that transports various metabolites and hormones to all tissues' extravascular spaces. While serum albumin is highly water-soluble, it has intrinsic binding sites which readily accommodate ionic, hydrophilic, or hydrophobic molecules, rendering it a good building block for a nano-adsorbent. To induce coacervation, a desolvating agent, ethanol, was added dropwise into the aqueous albumin solution, resulting in dehydration and liquid-liquid phase separation of albumins into albumin nanoparticles within a size range of 150 ~ 170 nm. The addition of glutaraldehyde as a cross-linker improved the size stability and homogeneity of albumin nanoparticles. Adsorption of amoxicillin antibiotics on albumin nanoparticles was dependent upon glutaraldehyde concentration used in desolvation and pH during adsorption. The maximum adsorption capacity measured by spectrophotometry was found to be 12.4 micrograms of amoxicillin per milligram of albumin nanoparticle. These results demonstrate serum albumin's potential as a building block for fabricating a natural nano-adsorbent to remove antibiotics from water.

항생제는 감염병 환자의 치료, 농수축산업의 생산성 향상을 위한 목적으로 광범위하게 사용되는 약물이다. 그러나 항생제 과용 및 낮은 생분해성으로 인해 상당량이 하수로 누출되어 환경오염을 유발하며 내성 박테리아 출현을 촉진하고 있다. 본 연구에서는 생분해성 혈청 단백질인 알부민을 항생제 흡착제로 사용하기 위한 가능성을 탐구하였다. 혈청 알부민은 다양한 대사 산물과 호르몬을 모든 조직의 혈관 외 공간으로 운반하는 천연 혈액 단백질이다. 혈청 알부민은 수용성이 높지만 이온성, 친수성 또는 소수성 분자를 쉽게 수용하는 고유 결합 부위를 가지고 있어 나노 흡착제로 유망한 물질이다. 코아세르베이션(coacervation)을 유도하기 위해 탈용매제인 에탄올을 알부민 수용액에 적가하여 150 ~ 170 nm 크기 범위의 알부민 나노 입자로 탈수화 및 액-액분리 하였다. 글루타르알데히드 가교제를 첨가할 경우 알부민 나노입자의 크기 안정성 및 동질성이 증가하였다. 항생제 아목시실린에 대한 알부민 나노입자의 흡착능 평가에서 가교제 사용 농도, pH에 따른 흡착능의 차이가 관찰되었다. 분광광도법으로 측정한 알부민 나노입자의 단위질량당(mg) 최대 흡착능은 pH 4.0 수용액에서 아목시실린 12.4 마이크로그램(㎍)이다. 이러한 결과는 물에서 항생제를 제거하는 천연 나노 흡착제를 제조하기 위한 구성 물질로서 혈청 알부민의 잠재력을 보여준다.

Keywords

References

  1. Dorne, J. L. C. M., Ragas, A. M. J., Frampton, G. K., Spurgeon, D. S., and Lewis, D. F., "Trends in Human Risk Assessment of Pharmaceuticals," Anal. Bioanal. Chem., 387(4), 1167-1172 (2007). https://doi.org/10.1007/s00216-006-0961-9
  2. Fent, K., Weston, A. A., and Caminada, D., "Ecotoxicology of Human Pharmaceuticals," Aquat. Toxicol., 76(2), 122-159 (2006). https://doi.org/10.1016/j.aquatox.2005.09.009
  3. Berendonk, T. U., Manaia, C. M., Merlin, C., Fatta-Kassinos, D., Cytryn, E., Walsh, F., Burgmann, H., Sorum, H., Norstrom, M., Pons, M. N., Kreuzinger, N., Huovinen, P., Stefani, S., Schwartz, T., Kisand, V., Baquero, F., and Martinez, J. L., "Tackling Antibiotic Resistance: the Environmental Framework," Nat. Rev. Microbiol., 13(5), 310-317 (2015). https://doi.org/10.1038/nrmicro3439
  4. Gao, P., He, S., Huang, S., Li, K., Liu, Z., Xue, G., and Sun, W., "Impacts of Coexisting Antibiotics, Antibacterial Residues, and Heavy Metals on the Occurrence of Erythromycin Resistance Genes in Urban Wastewater," Appl. Microbiol. Biotechnol., 99(9), 3971-3980 (2015). https://doi.org/10.1007/s00253-015-6404-9
  5. "The Korean Ministry of Environment Press Release - 'Detection of Some Pharmaceutical Substances Including Antibiotics in Major Rivers,'" http://www.me.go.kr/home/web/board/read.do?menuId=286&boardMasterId=1&boardCategoryId=39&boardId=162825 (accessed Jan. 28, 2021).
  6. Hena, S., Gutierrez, L., and Croue, J. P., "Removal of Pharmaceutical and Personal Care Products (PPCPs) from Wastewater Using Microalgae: A Review," J. Hazard. Mater., 403, 124041 (2021). https://doi.org/10.1016/j.jhazmat.2020.124041
  7. Guo, R., and Chen, J., "Application of Alga-Activated Sludge Combined System (AASCS) as a Novel Treatment to Remove Cephalosporins," Chem. Eng. J., 260, 550-556 (2015). https://doi.org/10.1016/j.cej.2014.09.053
  8. Du, Y., Zhang, S., Guo, R., and Chen, J., "Understanding the Algal Contribution in Combined UV-algae Treatment to Remove Antibiotic Cefradine," RSC Adv., 5(74), 59953-59959 (2015). https://doi.org/10.1039/C5RA10806C
  9. El Shenawy, E. A., Elkelawy, M., Bastawissi, H. A. E., Taha, M., Panchal, H., kumar Sadasivuni, K., and Thakar, N., "Effect of Cultivation Parameters and Heat Management on the Algae Species Growth Conditions and Biomass Production in a Continuous Feedstock Photobioreactor," Renew. Energy, 148, 807-815 (2020). https://doi.org/10.1016/j.renene.2019.10.166
  10. Malakootian, M., Yaseri, M., and Faraji, M., "Removal of Antibiotics from Aqueous Solutions by Nanoparticles: a Systematic Review and Meta-analysis," Environ. Sci. Pollut. Res., 26(9), 8444-8458 (2019). https://doi.org/10.1007/s11356-019-04227-w
  11. Van Wieren, E. M., Seymour, M. D., and Peterson, J. W., "Interaction of the Fluoroquinolone Antibiotic, Ofloxacin, with Titanium Oxide Nanoparticles in Water: Adsorption and Breakdown," Sci. Total Environ., 441, 1-9 (2012). https://doi.org/10.1016/j.scitotenv.2012.09.067
  12. de Sousa, D. N. R., Insa, S., Mozeto, A. A., Petrovic, M., Chaves, T. F., and Fadini, P. S., "Equilibrium and Kinetic Studies of the Adsorption of Antibiotics from Aqueous Solutions onto Powdered Zeolites," Chemosphere, 205, 137-146 (2018). https://doi.org/10.1016/j.chemosphere.2018.04.085
  13. Yu, K., Sun, C., Zhang, B., Hassan, M., and He, Y., "Size-dependent Adsorption of Antibiotics onto Nanoparticles in a Field-scale Wastewater Treatment Plant," Environ. Pollut., 248, 1079-1087 (2019). https://doi.org/10.1016/j.envpol.2019.02.090
  14. Aydin, S., Aydin, M. E., Beduk, F., and Ulvi, A., "Removal of Antibiotics from Aqueous Solution by Using Magnetic Fe3O4/red Mud-nanoparticles," Sci. Total Environ., 670, 539-546 (2019). https://doi.org/10.1016/j.scitotenv.2019.03.205
  15. Adams, L. K., Lyon, D. Y., and Alvarez, P. J., "Comparative Eco-toxicity of Nanoscale TiO2, SiO2, and ZnO Water Suspensions," Water Res., 40(19), 3527-3532 (2006). https://doi.org/10.1016/j.watres.2006.08.004
  16. Rahimizadeh, P., Yang, S., and Lim, S. I., "Albumin: An Emerging Opportunity in Drug Delivery," Biotechnol. Bioprocess Eng., 25(6), 985-995 (2020). https://doi.org/10.1007/s12257-019-0512-9
  17. Irache, J. M., and Espuelas, S., "Albumin Nanoparticles," in Nanotechnologies for the Life Sciences, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2007.
  18. "WHO Report on Surveillance of Antibiotic Consumption," (2016).
  19. Sun, S., Xiao, Q. R., Wang, Y., and Jiang, Y., "Roles of Alcohol Desolvating Agents on the Size Control of Bovine Serum Albumin Nanoparticles in Drug Delivery System," J. Drug Deliv. Sci. Technol., 47, 193-199 (2018). https://doi.org/10.1016/j.jddst.2018.07.018
  20. Cheung, D. T., and Nimni, M. E., "Mechanism of Crosslinking of Proteins by Glutaraldehyde I: Reaction with Model Compounds," Connect Tissue Res., 10(2), 187-199 (1982). https://doi.org/10.3109/03008208209034418
  21. Homsirikamol, C., Sunsandee, N., Pancharoen, U., and Nootong, K., "Synergistic Extraction of Amoxicillin from Aqueous Solution by Using Binary Mixtures of Aliquat 336, D2EHPA and TBP," Sep. Purif. Technol., 162, 30-36 (2016). https://doi.org/10.1016/j.seppur.2016.02.003
  22. Weber, C., Kreuter, J., and Langer, K., "Desolvation Process and Surface Characteristics of HSA-nanoparticles," Int. J. Pharm., 196(2), 197-200 (2000). https://doi.org/10.1016/S0378-5173(99)00420-2
  23. Anastopoulos, I., Pashalidis, I., Orfanos, A. G., Manariotis, I. D., Tatarchuk, T., Sellaoui, L., Bonilla-Petriciolet, A., Mittal, A., and Nunez-Delgado, A., "Removal of Caffeine, Nicotine and Amoxicillin from (waste) Waters by Various Adsorbents. A Review," J. Environ. Manage., 261, 110236 (2020). https://doi.org/10.1016/j.jenvman.2020.110236
  24. Putra, E. K., Pranowo, R., Sunarso, J., Indraswati, N., and Ismadji, S., "Performance of Activated Carbon and Bentonite for Adsorption of Amoxicillin from Wastewater: Mechanisms, Isotherms and Kinetics," Water Res., 43(9), 2419-2430 (2009). https://doi.org/10.1016/j.watres.2009.02.039
  25. Zha, S. xing, Zhou, Y., Jin, X., and Chen, Z., "The Removal of Amoxicillin from Wastewater Using Organobentonite," J. Environ. Manage., 129, 569-576 (2013). https://doi.org/10.1016/j.jenvman.2013.08.032