DOI QR코드

DOI QR Code

Inhibitors of Antigen-induced Degranulation of RBL-2H3 Cells Isolated from Amomum tsao-ko

초과(草果)의 RBL-2H3 세포 항원 유도 탈과립 억제성분

  • Jeong, Wonsik (Bio-Center, Gyeonggido Business & Science Accelerator (GBSA)) ;
  • Hong, Seong Su (Bio-Center, Gyeonggido Business & Science Accelerator (GBSA)) ;
  • Park, Sun-Mi (Bio-Center, Gyeonggido Business & Science Accelerator (GBSA)) ;
  • Lee, Jung A (Bio-Center, Gyeonggido Business & Science Accelerator (GBSA)) ;
  • Park, Ju-Hyoung (College of Pharmacy, Dankook University) ;
  • Ahn, Eun-Kyung (Bio-Center, Gyeonggido Business & Science Accelerator (GBSA)) ;
  • Choi, Chun Whan (Bio-Center, Gyeonggido Business & Science Accelerator (GBSA)) ;
  • Oh, Joa Sub (College of Pharmacy, Dankook University)
  • Received : 2020.11.04
  • Accepted : 2020.12.28
  • Published : 2021.03.31

Abstract

Bioactivity-guided fractionation of EtOH extract of the dried fruits of Amomum tsao-ko led to isolation of three compounds (1-3). Their structures were elucidated by spectroscopic methods (MS, 1D and 2D-NMR) and comparison with literature values, as naringenin-5-O-methyl ether (1), helichrysetin (2), and cardamomin (3). Compound 2 was obtained from the genus Amomum for the first time. Among them, compounds 2 and 3 inhibited on the release of β-hexosaminidase from RBL-2H3 cells, with 99.1 and 21.3% at the concentration of 50 μM, respectively.

전통생약으로서 다양한 효능과 향신료, 조미료로서 사용되어온 초과(草果)의 항알레르기 성분연구를 위해 80% 에탄올 추출물 중 CH2Cl2, 분획으로부터 3 종의 flavonoid를 단리하였으며, 이들의 물리화학적 성상과 분광분석 데이터로부터 구조를 확인한 결과 naringenin-5-O-methyl ether (1), helichrysetin (2) 및 cardamomin (3)로 각각 동정하였다. 이들 화합물 중 화합물 2는 Amomum 속으로부터 처음 규명되었고, 화합물 3은 이 식물에서 처음 보고되는 화합물이다. 또한 화합물 2와 3은 RBL-2H3 세포로부터 β-hexosaminidase assay를 수행한 결과 탈과립 억제효과를 나타내었다. 따라서 초과의 chalcone 성분은 탈과립 억제효능을 통하여 알러지 질환에 유용할 것으로 사료된다.

Keywords

References

  1. Moon SS, Lee JY, Cho SC (2004) Isotsaokoin, an antifungal agent from Amomum tsao-ko. J Nat Prod 67: 889-891 https://doi.org/10.1021/np030464l
  2. Yang Y, Yan RW, Cai XQ, Zheng ZL, Zou GL (2008) Chemical composition and antimicrobial activity of the essential oil of Amomum tsao-ko. J Sci Food Agric 88(12): 2111-2116 https://doi.org/10.1002/jsfa.3321
  3. Lim, TK (2013) Edible medicinal and non-medicinal plants. Springer 5: 813-816
  4. Yu L, Shirai N, Suzuki H, Sugane N, Hosono T, Nakajima Y, Kajiwara M, Takatori K (2010) The effect of methanol extracts of tsao-ko (Amomum tsao-ko Crevost et Lemaire) on digestive enzyme and antioxidant activity in vitro, and plasma lipids and glucose and liver lipids in mice. J Nutr Sci Vitaminol 56: 171-176 https://doi.org/10.3177/jnsv.56.171
  5. Zhao ZZ, Xiao PG (2010) Encyclopedia of medicinal plants. World Publishing Corporation, Hong kong 4: 36-38
  6. Hong SS, Lee JH, Choi YH, Jeong W, Ahn EK, Lym SH, Oh JS (2015) Amotsaokonal A-C, benzaldehyde and cycloterpenal from Amomum tsao-ko. Tetrahedron Lett 56: 6681-6684 https://doi.org/10.1016/j.tetlet.2015.10.045
  7. Lee JY, Kim SH, Sung SH, Kim YC (2008) Inhibitory constituents of lipopolysaccharide-induced nitric oxide production in BV2 microglia isolated from Amomum tsao-ko. Planta Med 74(8): 867-869 https://doi.org/10.1055/s-2008-1074552
  8. Lee JY (2003) Bioactive compounds from medicinal plant, Amomum tsao-ko: Isolation and chemical structures. Dissertation, Kong Ju University
  9. Teresita SM, Hiroe K, Masashi H, Nobuji N (2000) Constituents of Amomum tsao-ko and their radical scavenging and antioxidant activities. JAOCS 77(6): 667-673 https://doi.org/10.1007/s11746-000-0107-4
  10. Wang W, Yang CR, Zhang YJ (2005) Phenolic constituents from the fruits of Amomum tsao-ko (Zingiberaceae). Acta Bot Yunnan 31(3): 284-288 https://doi.org/10.3724/SP.J.1143.2009.09031
  11. Yang Y, Yue Y, Runwei Y, Guolin Z (2010) Cytotoxic, apoptotic and antioxidant activity of the essential oil of Amomum tsao-ko. Bioresour Technol 101: 4205-4211 https://doi.org/10.1016/j.biortech.2009.12.131
  12. He XF, Wang HM, Geng CA, Hu J, Zhang XM, Guo YQ, Chen JJ (2020) Amomutsaokols A-K, diarylheptanoids from Amomum tsao-ko and their αglucosidase inhibitory activity. Phytochemistry 177: 112418/1-112418/10
  13. Kim JG, Jang H, Le TPL, Hong HR, Lee MK, Hing JT, Lee D, Hwang BY (2019) Pyranoflavanones and pyranochalcones from the fruits of Amomum tsao-ko. J Nat Prod 82: 1886-1892 https://doi.org/10.1021/acs.jnatprod.9b00155
  14. Kim MS, Ahn EK, Hong SS, Oh JS (2016) 2,8-Decadiene-1,10-diol inhibits lipopolysaccharide-induced inflammatory responses through inactivation of Mitogen-activated protein kinase and Nuclear Factor-κB signaling pathway. Inflammation 39(2): 583-591 https://doi.org/10.1007/s10753-015-0283-1
  15. Lee JA, Park YJ, Jeong W, Hong SS (2017) Anti-obesity effect of Amomum taso-ko ethanol extract in 3T3-L1 adipocytes. J Appl Biol Chem 60(1): 23-28 https://doi.org/10.3839/jabc.2017.005
  16. Li B, Choi HJ, Lee DS, Oh H, Kim YC, Moon JY, Park WH, Park SD, Kim JE (2014) Amomum tsao-ko suppresses lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages via Nrf2-dependent heme oxygenase-1 expression. Am J Chin Med 42(5): 1229-1244 https://doi.org/10.1142/S0192415X14500773
  17. Kawamoto Y, Kondo H, Hasegawa M, Kurimoto C, Ishii Y, Kato C, Botei T, Shinya M, Murate T, Ueno Y, Kawabe M, Goto Y, Yamamoto R, Iida M, Yajima I, Ohgami N, Kato M, Takeda K (2019) Inhibition of mast cell degranulation by melanin. Biochem Pharmacol 163: 178-193 https://doi.org/10.1016/j.bcp.2019.02.015
  18. Nugrahini AD, Ishida M, Nakagawa T, Nishi K, Sugahara T (2019) Anti-degranulation activity of caffeine: In vitro and in vivo study. J Funct Foods 60: 103422/1-103422/8
  19. Hu J, Chen Y, Zhu J, Gao M, Li J, Song Z, Xu H, Wang Z (2020) Antidegranulation response of herbal formula in RBL-2H3 cells. Micron 130: 102819/1-102819/6
  20. Jung Y, Jeon Y, Kim HJ, Kang KS, Kim YK, Kim SN (2014) Anti-allergic and anti-inflammatory effect of Leonurus sibiricus seed ethyl acetate fractions. Yakhak Hoeji 58(5): 294-299
  21. Chung MJ, Ha TJ, Choi HN, Lee JS, Park YI (2011) Inhibitory effects of anthocyanins isolated from black soybean (Glycine max L.) seed coat on degranulation and cytokine generation in RBL-2H3 cells. J Korean Soc Food Sci Nutr 40(12): 1662-1667 https://doi.org/10.3746/JKFN.2011.40.12.1662
  22. Hong SS, Jeong W, Kim JK, Kwon JG, Lee JY, Ahn EK, Oh J, Seo DW, Oh JS (2014) Neolignan inhibitors of antigen-induced degranulation in RBL-2H3 cells from the needles of Pinus thunbergii. Fitoterapia 99: 347-351 https://doi.org/10.1016/j.fitote.2014.10.015
  23. Li X, Zhu LJ, Chen JP, Shi CY, Niu LT, Zhang X, Yao XS (2019) CMethylated flavanones from the rhizomes of Matteuccia intermedia and their α-glucosidase inhibitory activity. Fitoterapia 136: 104147/1-104147/10
  24. Passreiter CM, Suckow-Schnitker AK, Kulawik A, Addae-Kyereme J, Wright CW, Watjen XW (2015) Prenylated flavanone derivatives isolated from Erythrina addisoniae are potent inducers of apoptotic cell death. Phytochemistry 117: 237-244 https://doi.org/10.1016/j.phytochem.2015.04.002
  25. Kim JG, Le TPL, Hong HR, Han JS, Ko JH, Lee SH, Lee MK, Hwang BY (2019) Nitric oxide inhibitory constituents from the fruits of Amomum tsao- ko. Nat Prod Sci 25(1): 76-80 https://doi.org/10.20307/nps.2019.25.1.76
  26. Yoshimura M, Sano A, Kamei, JI, Obata A (2009) Identification and quantification of metabolites of orally administered naringenin chalcone in rats. J Agric Food Chem 57(14): 6432-6437 https://doi.org/10.1021/jf901137x
  27. Iwase Y, Takahashi M, Takemura Y, Ju-Ichi M, Ito C, Furukawa H, Yano M (2001) Isolation and identification of two new flavanones and a chalcone from Citrus kinokuni. Chem Pharm Bull 49(10): 1356-1358 https://doi.org/10.1248/cpb.49.1356
  28. Aponte JC, Castillo D, Estevez Y, Gonzalez G, Arevalo J, Hammond GB, Sauvain M (2010) In vitro and in vivo anti- Leishmania activity of polysubstituted synthetic chalcones. Bioorg Med Chem Lett 20: 100-103 https://doi.org/10.1016/j.bmcl.2009.11.033
  29. Potipiranun T, Adisakwattana S, Worawalai W, Ramadhan R, Phuwapraisirisan P (2018) Identification of pinocembrin as an anti-glycation agent and α-glucosidase inhibitor from fingerroot (Boesenbergia rotunda) : the tentative structure- activity relationship towards mg-trapping activity. Molecules 23(12): 3365/1-3365/13