References
- Rafiq S, Huma N, Pasha I, Sameen A, Mukhtar O, Khan MI. 2016. Chemical composition, nitrogen fractions and amino acids profile of milk from different animal species. Asian-Australas. J. Anim. Sci. 29: 1022-1028. https://doi.org/10.5713/ajas.15.0452
- Wookey N. 1979. Wheat gluten as a protein ingredient. J. Am. Oil Chem. Soc. 56: 306-309. https://doi.org/10.1007/BF02671482
- Rezac S, Kok CR, Heermann M, Hutkins R. 2018. Fermented foods as a dietary source of live organisms. Front. Microbiol. 9: 1785. https://doi.org/10.3389/fmicb.2018.01785
- Leroy F, Vuyst LD. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
- Ganzle MG. 2015. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2: 106-117. https://doi.org/10.1016/j.cofs.2015.03.001
- Zareian M, Ebrahimpour A, Bakar FA, Mohamed AK, Forghani B, Ab-Kadir MS, et al. 2012. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods. Int. J. Mol. Sci. 13: 5482-5497. https://doi.org/10.3390/ijms13055482
- Tanous C, Chambellon E, Sepulchre AM, Yvon M. 2005. The gene encoding the glutamate dehydrogenase in Lactococcus lactis is part of a remnant Tn3 transposon carried by a large plasmid. J. Bacteriol. 187: 5019-5022. https://doi.org/10.1128/JB.187.14.5019-5022.2005
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75. https://doi.org/10.1186/1471-2164-9-75
- Darzi Y, Letunic I, Bork P, Yamada T. 2018. iPath3.0: interactive pathways explorer v3. Nucleic Acids Res. 46: W510-W513. https://doi.org/10.1093/nar/gky299
- Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, et al. 2009. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 10: 154. https://doi.org/10.1186/1471-2105-10-154
- Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, et al. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731-753. https://doi.org/10.1101/gr.169701
- Gasson MJ. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154: 1-9. https://doi.org/10.1128/jb.154.1.1-9.1983
- Kempler GM, McKay LL. 1980. Improved medium for detection of citrate-fermenting Streptococcus lactis subsp. diacetylactis. Appl. Environ. Microbiol. 39: 926-927. https://doi.org/10.1128/AEM.39.4.926-927.1980
- Jeong DW, Lee B, Lee H, Jeong K, Jang M, Lee JH. 2018. Urease characteristics and phylogenetic status of Bacillus paralicheniformis. J. Microbiol. Biotechnol. 28: 1992-1998. https://doi.org/10.4014/jmb.1809.09030
- Lee JH, Shin D, Lee B, Lee H, Lee I, Jeong DW. 2017. Genetic diversity and antibiotic resistance of Enterococcus faecalis isolates from traditional Korean fermented soybean foods. J. Microbiol. Biotechnol. 27: 916-924. https://doi.org/10.4014/jmb.1612.12033
- Jeong DW, Kim HR, Jung G, Han S, Kim CT, Lee JH. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. J. Microbiol. Biotechnol. 24: 648-660. https://doi.org/10.4014/jmb.1401.01009
- Zou Z, Zhao Y, Zhang T, Xu J, He A, Deng Y. 2018. Efficient isolation and characterization of a cellulase hyperproducing mutant strain of Trichoderma reesei. J. Microbiol. Biotechnol. 28: 1473-1481. https://doi.org/10.4014/jmb.1805.05009
- Song CW, Rathnasingh C, Park JM, Lee J, Song H. 2018. Isolation and evaluation of Bacillus strains for industrial production of 2,3-Butanediol. J. Microbiol Biotechnol. 28: 409-417. https://doi.org/10.4014/jmb.1710.10038
- Guan L, Cho KH, Lee JH. 2011. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiol. 28: 101-113. https://doi.org/10.1016/j.fm.2010.09.001
Cited by
- High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture vol.3, pp.2, 2021, https://doi.org/10.1007/bf00003690
- Biotechnology of algal biomass production: a review of systems for outdoor mass culture vol.5, pp.6, 1993, https://doi.org/10.1007/bf02184638
- Characterization of CO2 flux through hollow-fiber membranes using pH modeling vol.592, 2019, https://doi.org/10.1016/j.memsci.2019.117389
- Improved CO2 utilization efficiency using membrane carbonation in outdoor raceways vol.51, 2020, https://doi.org/10.1016/j.algal.2020.102070
- Microbiome-wide association studies between phyllosphere microbiota and ionome highlight the beneficial symbiosis of Lactococcus lactis in alleviating aluminium in cassava vol.171, 2021, https://doi.org/10.1016/j.plaphy.2021.12.029