DOI QR코드

DOI QR Code

Selection of Lactococcus lactis HY7803 for Glutamic Acid Production Based on Comparative Genomic Analysis

  • Lee, Jungmin (Department of Food and Nutrition, Dongduk Women's University) ;
  • Heo, Sojeong (Department of Food and Nutrition, Dongduk Women's University) ;
  • Choi, Jihoon (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Kim, Minsoo (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Pyo, Eunji (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Lee, Myounghee (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Shin, Sangick (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Lee, Jaehwan (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Sim, Jaehun (R&BD Center, Korea Yakult Co., Ltd.) ;
  • Jeong, Do-Won (Department of Food and Nutrition, Dongduk Women's University)
  • Received : 2020.11.16
  • Accepted : 2020.12.29
  • Published : 2021.02.28

Abstract

Comparative genomic analysis was performed on eight species of lactic acid bacteria (LAB)-Lactococcus (L.) lactis, Lactobacillus (Lb.) plantarum, Lb. casei, Lb. brevis, Leuconostoc (Leu.) mesenteroides, Lb. fermentum, Lb. buchneri, and Lb. curvatus-to assess their glutamic acid production pathways. Glutamic acid is important for umami taste in foods. The only genes for glutamic acid production identified in the eight LAB were for conversion from glutamine in L. lactis and Leu. mesenteroides, and from glucose via citrate in L. lactis. Thus, L. lactis was considered to be potentially the best of the species for glutamic acid production. By biochemical analyses, L. lactis HY7803 was selected for glutamic acid production from among 17 L. lactis strains. Strain HY7803 produced 83.16 pmol/μl glutamic acid from glucose, and exogenous supplementation of citrate increased this to 108.42 pmol/μl. Including glutamic acid, strain HY7803 produced more of 10 free amino acids than L. lactis reference strains IL1403 and ATCC 7962 in the presence of exogenous citrate. The differences in the amino acid profiles of the strains were illuminated by principal component analysis. Our results indicate that L. lactis HY7803 may be a good starter strain for glutamic acid production.

Keywords

References

  1. Rafiq S, Huma N, Pasha I, Sameen A, Mukhtar O, Khan MI. 2016. Chemical composition, nitrogen fractions and amino acids profile of milk from different animal species. Asian-Australas. J. Anim. Sci. 29: 1022-1028. https://doi.org/10.5713/ajas.15.0452
  2. Wookey N. 1979. Wheat gluten as a protein ingredient. J. Am. Oil Chem. Soc. 56: 306-309. https://doi.org/10.1007/BF02671482
  3. Rezac S, Kok CR, Heermann M, Hutkins R. 2018. Fermented foods as a dietary source of live organisms. Front. Microbiol. 9: 1785. https://doi.org/10.3389/fmicb.2018.01785
  4. Leroy F, Vuyst LD. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
  5. Ganzle MG. 2015. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2: 106-117. https://doi.org/10.1016/j.cofs.2015.03.001
  6. Zareian M, Ebrahimpour A, Bakar FA, Mohamed AK, Forghani B, Ab-Kadir MS, et al. 2012. A glutamic acid-producing lactic acid bacteria isolated from Malaysian fermented foods. Int. J. Mol. Sci. 13: 5482-5497. https://doi.org/10.3390/ijms13055482
  7. Tanous C, Chambellon E, Sepulchre AM, Yvon M. 2005. The gene encoding the glutamate dehydrogenase in Lactococcus lactis is part of a remnant Tn3 transposon carried by a large plasmid. J. Bacteriol. 187: 5019-5022. https://doi.org/10.1128/JB.187.14.5019-5022.2005
  8. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75. https://doi.org/10.1186/1471-2164-9-75
  9. Darzi Y, Letunic I, Bork P, Yamada T. 2018. iPath3.0: interactive pathways explorer v3. Nucleic Acids Res. 46: W510-W513. https://doi.org/10.1093/nar/gky299
  10. Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, et al. 2009. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 10: 154. https://doi.org/10.1186/1471-2105-10-154
  11. Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, et al. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731-753. https://doi.org/10.1101/gr.169701
  12. Gasson MJ. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J. Bacteriol. 154: 1-9. https://doi.org/10.1128/jb.154.1.1-9.1983
  13. Kempler GM, McKay LL. 1980. Improved medium for detection of citrate-fermenting Streptococcus lactis subsp. diacetylactis. Appl. Environ. Microbiol. 39: 926-927. https://doi.org/10.1128/AEM.39.4.926-927.1980
  14. Jeong DW, Lee B, Lee H, Jeong K, Jang M, Lee JH. 2018. Urease characteristics and phylogenetic status of Bacillus paralicheniformis. J. Microbiol. Biotechnol. 28: 1992-1998. https://doi.org/10.4014/jmb.1809.09030
  15. Lee JH, Shin D, Lee B, Lee H, Lee I, Jeong DW. 2017. Genetic diversity and antibiotic resistance of Enterococcus faecalis isolates from traditional Korean fermented soybean foods. J. Microbiol. Biotechnol. 27: 916-924. https://doi.org/10.4014/jmb.1612.12033
  16. Jeong DW, Kim HR, Jung G, Han S, Kim CT, Lee JH. 2014. Bacterial community migration in the ripening of doenjang, a traditional Korean fermented soybean food. J. Microbiol. Biotechnol. 24: 648-660. https://doi.org/10.4014/jmb.1401.01009
  17. Zou Z, Zhao Y, Zhang T, Xu J, He A, Deng Y. 2018. Efficient isolation and characterization of a cellulase hyperproducing mutant strain of Trichoderma reesei. J. Microbiol. Biotechnol. 28: 1473-1481. https://doi.org/10.4014/jmb.1805.05009
  18. Song CW, Rathnasingh C, Park JM, Lee J, Song H. 2018. Isolation and evaluation of Bacillus strains for industrial production of 2,3-Butanediol. J. Microbiol Biotechnol. 28: 409-417. https://doi.org/10.4014/jmb.1710.10038
  19. Guan L, Cho KH, Lee JH. 2011. Analysis of the cultivable bacterial community in jeotgal, a Korean salted and fermented seafood, and identification of its dominant bacteria. Food Microbiol. 28: 101-113. https://doi.org/10.1016/j.fm.2010.09.001

Cited by

  1. High CO2 partial pressure depresses productivity and bioenergetic growth yield of Chlorella pyrenoidosa culture vol.3, pp.2, 2021, https://doi.org/10.1007/bf00003690
  2. Biotechnology of algal biomass production: a review of systems for outdoor mass culture vol.5, pp.6, 1993, https://doi.org/10.1007/bf02184638
  3. Characterization of CO2 flux through hollow-fiber membranes using pH modeling vol.592, 2019, https://doi.org/10.1016/j.memsci.2019.117389
  4. Improved CO2 utilization efficiency using membrane carbonation in outdoor raceways vol.51, 2020, https://doi.org/10.1016/j.algal.2020.102070
  5. Microbiome-wide association studies between phyllosphere microbiota and ionome highlight the beneficial symbiosis of Lactococcus lactis in alleviating aluminium in cassava vol.171, 2021, https://doi.org/10.1016/j.plaphy.2021.12.029