References
- Palese P. 2004. Influenza: old and new threats. Nat. Med. 10: S82-87. https://doi.org/10.1038/nm1141
- Te Velthuis AJ, Fodor E. 2016. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat. Rev. Microbiol. 14: 479-493. https://doi.org/10.1038/nrmicro.2016.87
- Chen J, Deng YM. 2009. Influenza virus antigenic variation, host antibody production and new approach to control epidemics. Virol. J. 6: 30. https://doi.org/10.1186/1743-422X-6-30
- World Health Organization. 2018. Influenza (Seasonal). Available from https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal). Accessed Nov. 10, 2020.
- Webster RG, Laver WG. 1972. The origin of pandemic influenza. Bull World Health Organ. 47: 449-452.
- Nichol KL, Treanor JJ. 2006. Vaccines for seasonal and pandemic influenza. J. Infect. Dis. 194 Suppl 2: S111-118. https://doi.org/10.1086/507544
- Gerhard W, Mozdzanowska K, Zharikova D. 2006. Prospects for universal influenza virus vaccine. Emerg. Infect. Dis. 12: 569-574. https://doi.org/10.3201/eid1204.051020
- Atmar RL, Keitel WA, Cate TR, Munoz FM, Ruben F, Couch RB. 2007. A dose-response evaluation of inactivated influenza vaccine given intranasally and intramuscularly to healthy young adults. Vaccine 25: 5367-5373. https://doi.org/10.1016/j.vaccine.2007.05.002
- Martin Mdel P, Seth S, Koutsonanos DG, Jacob J, Compans RW, Skountzou I. 2010. Adjuvanted influenza vaccine administered intradermally elicits robust long-term immune responses that confer protection from lethal challenge. PLoS One 5: e10897. https://doi.org/10.1371/journal.pone.0010897
- Ada GL, Jones PD. 1986. The immune response to influenza infection. Curr. Top Microbiol. Immunol. 128: 1-54. https://doi.org/10.1007/978-3-642-71272-2_1
- Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, et al. 2004. Mapping the antigenic and genetic evolution of influenza virus. Science 305: 371-376. https://doi.org/10.1126/science.1097211
- van de Sandt CE, Kreijtz JH, Rimmelzwaan GF. 2012. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 4: 1438-1476. https://doi.org/10.3390/v4091438
- Saunders-Hastings PR, Krewski D. 2016. Reviewing the history of pandemic influenza: Understanding patterns of emergence and transmission. Pathogens. 5: 66. https://doi.org/10.3390/pathogens5040066
- Lee YN, Lee YT, Kim MC, Gewirtz AT, Kang SM. 2016. A novel vaccination strategy mediating the induction of lung-resident memory CD8 T cells confers heterosubtypic immunity against future pandemic influenza virus. J. Immunol. 196: 2637-2645. https://doi.org/10.4049/jimmunol.1501637
- Wang W, Huang B, Jiang T, Wang X, Qi X, Tan W, et al. 2014. Maximal immune response and cross protection by influenza virus nucleoprotein derived from E. coli using an optimized formulation. Virology 468-470: 265-273. https://doi.org/10.1016/j.virol.2014.08.008
- Steel J, Lowen AC, Wang TT, Yondola M, Gao Q, Haye K, et al. 2010. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio 1: e00018-10.
- Wang W, Huang B, Jiang T, Wang X, Qi X, Gao Y, et al. 2012. Robust immunity and heterologous protection against influenza in mice elicited by a novel recombinant NP-M2e fusion protein expressed in E. coli. PLoS One 7: e52488. https://doi.org/10.1371/journal.pone.0052488
- Lee YN, Kim MC, Lee YT, Hwang HS, Lee J, Kim C, et al. 2015. Cross protection against influenza A virus by yeast-expressed heterologous tandem repeat M2 extracellular proteins. PLoS One 10: e0137822. https://doi.org/10.1371/journal.pone.0137822
- Goff PH, Eggink D, Seibert CW, Hai R, Martinez-Gil L, Krammer F, et al. 2013. Adjuvants and immunization strategies to induce influenza virus hemagglutinin stalk antibodies. PLoS One 8: e79194. https://doi.org/10.1371/journal.pone.0079194
- Shim BS, Choi YK, Yun CH, Lee EG, Jeon YS, Park SM, et al. 2011. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza. PLoS One 6: e27953. https://doi.org/10.1371/journal.pone.0027953
- Skehel JJ, Wiley DC. 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69: 531-569. https://doi.org/10.1146/annurev.biochem.69.1.531
- Cross KJ, Langley WA, Russell RJ, Skehel JJ, Steinhauer DA. 2009. Composition and functions of the influenza fusion peptide. Protein Pept. Lett. 16: 766-778. https://doi.org/10.2174/092986609788681715
- Mallajosyula VV, Citron M, Ferrara F, Lu X, Callahan C, Heidecker GJ, et al. 2014. Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc. Natl. Acad. Sci. USA111: E2514-2523. https://doi.org/10.1073/pnas.1402766111
- Tan GS, Krammer F, Eggink D, Kongchanagul A, Moran TM, Palese P. 2012. A pan-H1 anti-hemagglutinin monoclonal antibody with potent broad-spectrum efficacy in vivo. J. Virol. 86: 6179-6188. https://doi.org/10.1128/JVI.00469-12
- Wohlbold TJ, Nachbagauer R, Margine I, Tan GS, Hirsh A, Krammer F. 2015. Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine 33: 3314-3321. https://doi.org/10.1016/j.vaccine.2015.05.038
- Nabel GJ, Fauci AS. 2010. Induction of unnatural immunity: prospects for a broadly protective universal influenza vaccine. Nat. Med. 16: 1389-1391. https://doi.org/10.1038/nm1210-1389
- Jegaskanda S, Job ER, Kramski M, Laurie K, Isitman G, de Rose R, et al. 2013. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J. Immunol. 190: 1837-1848. https://doi.org/10.4049/jimmunol.1201574
- Vemula SV, Sayedahmed EE, Sambhara S, Mittal SK. 2017. Vaccine approaches conferring cross-protection against influenza viruses. Expert. Rev. Vaccines 16: 1141-1154. https://doi.org/10.1080/14760584.2017.1379396
- Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. 1999. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 5: 1157-1163. https://doi.org/10.1038/13484
- Frace AM, Klimov AI, Rowe T, Black RA, Katz JM. 1999. Modified M2 proteins produce heterotypic immunity against influenza A virus. Vaccine 17: 2237-2244. https://doi.org/10.1016/S0264-410X(99)00005-5
- Slepushkin VA, Katz JM, Black RA, Gamble WC, Rota PA, Cox NJ. 1995. Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. Vaccine 13: 1399-1402. https://doi.org/10.1016/0264-410X(95)92777-Y
- Tutykhina I, Esmagambetov I, Bagaev A, Pichugin A, Lysenko A, Shcherbinin D, et al. 2018. Vaccination potential of B and T epitope-enriched NP and M2 against Influenza A viruses from different clades and hosts. PLoS One 13: e0191574. https://doi.org/10.1371/journal.pone.0191574
- Jameson J, Cruz J, Terajima M, Ennis FA. 1999. Human CD8+ and CD4+ T lymphocyte memory to influenza A viruses of swine and avian species. J. Immunol. 162: 7578-7583.
- Gianfrani C, Oseroff C, Sidney J, Chesnut RW, Sette A. 2000. Human memory CTL response specific for influenza A virus is broad and multispecific. Hum. Immunol. 61: 438-452. https://doi.org/10.1016/S0198-8859(00)00105-1
- Canaday DH, Gehring A, Leonard EG, Eilertson B, Schreiber JR, Harding CV, et al. 2003. T-cell hybridomas from HLA-transgenic mice as tools for analysis of human antigen processing. J. Immunol. Methods 281: 129-142. https://doi.org/10.1016/j.jim.2003.07.004
- Misplon JA, Lo CY, Gabbard JD, Tompkins SM, Epstein SL. 2010. Genetic control of immune responses to influenza A matrix 2 protein (M2). Vaccine 28: 5817-5827. https://doi.org/10.1016/j.vaccine.2010.06.069
- Mezhenskaya D, Isakova-Sivak I, Rudenko L. 2019. M2e-based universal influenza vaccines: a historical overview and new approaches to development. J. Biomed. Sci. 26: 76. https://doi.org/10.1186/s12929-019-0572-3
- Grebe KM, Yewdell JW, Bennink JR. 2008. Heterosubtypic immunity to influenza A virus: where do we stand? Microbes Infect. 10: 1024-1029. https://doi.org/10.1016/j.micinf.2008.07.002
- Rimmelzwaan GF, Fouchier RA, Osterhaus AD. 2007. Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Curr. Opin. Biotechnol. 18: 529-536. https://doi.org/10.1016/j.copbio.2007.11.002
- Zheng M, Luo J, Chen Z. 2014. Development of universal influenza vaccines based on influenza virus M and NP genes. Infection 42: 251-262. https://doi.org/10.1007/s15010-013-0546-4
- Lee SY, Kang JO, Chang J. 2019. Nucleoprotein vaccine induces cross-protective cytotoxic T lymphocytes against both lineages of influenza B virus. Clin. Exp. Vaccine Res. 8: 54-63. https://doi.org/10.7774/cevr.2019.8.1.54
- Epstein SL, Kong WP, Misplon JA, Lo CY, Tumpey TM, Xu L, et al. 2005. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine 23: 5404-5410. https://doi.org/10.1016/j.vaccine.2005.04.047
- Macleod MK, David A, Jin N, Noges L, Wang J, Kappler JW, et al. 2013. Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza A virus that expresses an altered nucleoprotein sequence. PLoS One 8: e61775. https://doi.org/10.1371/journal.pone.0061775
- Tsybalova LM, Stepanova LA, Shuklina MA, Mardanova ES, Kotlyarov RY, Potapchuk MV, et al. 2018. Combination of M2e peptide with stalk HA epitopes of influenza A virus enhances protective properties of recombinant vaccine. PLoS One 13: e0201429. https://doi.org/10.1371/journal.pone.0201429
- Stepanova LA, Mardanova ES, Shuklina MA, Blokhina EA, Kotlyarov RY, Potapchuk MV, et al. 2018. Flagellin-fused protein targeting M2e and HA2 induces potent humoral and T-cell responses and protects mice against various influenza viruses a subtypes. J. Biomed. Sci. 25: 33. https://doi.org/10.1186/s12929-018-0433-5
- Kim YJ, Lee YT, Kim MC, Lee YN, Kim KH, Ko EJ, et al. 2017. Cross-protective efficacy of influenza virus M2e containing virus-like particles is superior to hemagglutinin vaccines and variable depending on the genetic backgrounds of mice. Front. Immunol. 8: 1730. https://doi.org/10.3389/fimmu.2017.01730
- Nguyen QT, Kwak C, Lee WS, Kim J, Jeong J, Sung MH, et al. 2019. Poly-gamma-Glutamic acid complexed with alum induces cross-protective immunity of pandemic H1N1 vaccine. Front. Immunol. 10: 1604. https://doi.org/10.3389/fimmu.2019.01604
- Yang J, Shim SM, Nguyen TQ, Kim EH, Kim K, Lim YT, et al. 2017. Poly-gamma-glutamic acid/chitosan nanogel greatly enhances the efficacy and heterosubtypic cross-reactivity of H1N1 pandemic influenza vaccine. Sci. Rep. 7: 44839. https://doi.org/10.1038/srep44839
- Reed LJ, Muench H. 1938. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 27: 493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408
- Yang M, Berhane Y, Salo T, Li M, Hole K, Clavijo A. 2008. Development and application of monoclonal antibodies against avian influenza virus nucleoprotein. J. Virol. Methods 147: 265-274. https://doi.org/10.1016/j.jviromet.2007.09.016
- Kim MC, Song JM, O E, Kwon YM, Lee YJ, Compans RW, et al. 2013. Virus-like particles containing multiple M2 extracellular domains confer improved cross-protection against various subtypes of influenza virus. Mol. Ther. 21: 485-492. https://doi.org/10.1038/mt.2012.246
- Asthagiri Arunkumar G, Ioannou A, Wohlbold TJ, Meade P, Aslam S, Amanat F, et al. 2019. Broadly cross-reactive, nonneutralizing antibodies against influenza B Virus hemagglutinin demonstrate effector function-dependent protection against lethal viral challenge in mice. J Virol. 93: e01696-18.
- Park SJ, Si YJ, Kim J, Song MS, Kim SM, Kim EH, et al. 2016. Cross-protective efficacies of highly-pathogenic avian influenza H5N1 vaccines against a recent H5N8 virus. Virology 498: 36-43. https://doi.org/10.1016/j.virol.2016.08.010
- Jegaskanda S, Weinfurter JT, Friedrich TC, Kent SJ. 2013. Antibody-dependent cellular cytotoxicity is associated with control of pandemic H1N1 influenza virus infection of macaques. J. Virol. 87: 5512-5522. https://doi.org/10.1128/JVI.03030-12
- Wang TT, Tan GS, Hai R, Pica N, Ngai L, Ekiert DC, et al. 2010. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc. Natl. Acad. Sci. USA 107: 18979-18984. https://doi.org/10.1073/pnas.1013387107
- DiLillo DJ, Tan GS, Palese P, Ravetch JV. 2014. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcgammaR interactions for protection against influenza virus in vivo. Nat. Med. 20: 143-151. https://doi.org/10.1038/nm.3443
- Black RA, Rota PA, Gorodkova N, Klenk HD, Kendal AP. 1993. Antibody response to the M2 protein of influenza A virus expressed in insect cells. J. Gen. Virol. 74 (Pt 1): 143-146. https://doi.org/10.1099/0022-1317-74-1-143
- Feng J, Zhang M, Mozdzanowska K, Zharikova D, Hoff H, Wunner W, et al. 2006. Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol. J. 3: 102. https://doi.org/10.1186/1743-422X-3-102
- Liu W, Li H, Chen YH. 2003. N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication. FEMS Immunol. Med. Microbiol. 35: 141-146. https://doi.org/10.1016/S0928-8244(03)00009-9
- De Filette M, Ramne A, Birkett A, Lycke N, Lowenadler B, Min Jou W, et al. 2006. The universal influenza vaccine M2e-HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection. Vaccine 24: 544-551. https://doi.org/10.1016/j.vaccine.2005.08.061
- Yang P, Wang W, Gu H, Li Z, Zhang K, Wang Z, et al. 2014. Protection against influenza H7N9 virus challenge with a recombinant NP-M1-HSP60 protein vaccine construct in BALB/c mice. Antiviral Res. 111: 1-7. https://doi.org/10.1016/j.antiviral.2014.08.008
- Ameghi A, Pilehvar-Soltanahmadi Y, Baradaran B, Barzegar A, Taghizadeh M, Zarghami N, et al. 2016. Protective immunity against homologous and heterologous influenza virus lethal challenge by immunization with new recombinant chimeric HA2-M2e fusion protein in BALB/C mice. Viral. Immunol. 29: 228-234. https://doi.org/10.1089/vim.2015.0050
- Smalls-Mantey A, Doria-Rose N, Klein R, Patamawenu A, Migueles SA, Ko SY, et al. 2012. Antibody-dependent cellular cytotoxicity against primary HIV-infected CD4+ T cells is directly associated with the magnitude of surface IgG binding. J. Virol. 86: 8672-8680. https://doi.org/10.1128/JVI.00287-12
- Lai J, Choo JAL, Tan WJ, Too CT, Oo MZ, Suter MA, et al. 2017. TCR-like antibodies mediate complement and antibody-dependent cellular cytotoxicity against Epstein-Barr virus-transformed B lymphoblastoid cells expressing different HLA-A*02 microvariants. Sci. Rep. 7: 9923. https://doi.org/10.1038/s41598-017-10265-6
- He W, Tan GS, Mullarkey CE, Lee AJ, Lam MM, Krammer F, et al. 2016. Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus. Proc. Natl. Acad. Sci. USA 113: 11931-11936. https://doi.org/10.1073/pnas.1609316113
- Allan W, Tabi Z, Cleary A, Doherty PC. 1990. Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. J. Immunol. 144: 3980-3986.
- Doherty PC, Topham DJ, Tripp RA, Cardin RD, Brooks JW, Stevenson PG. 1997. Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol. Rev. 159: 105-117. https://doi.org/10.1111/j.1600-065X.1997.tb01010.x
- Eichelberger MC, Wang ML, Allan W, Webster RG, Doherty PC. 1991. Influenza virus RNA in the lung and lymphoid tissue of immunologically intact and CD4-depleted mice. J. Gen. Virol. 72 (Pt 7): 1695-1698. https://doi.org/10.1099/0022-1317-72-7-1695
- Bridges CB, Fukuda K, Uyeki TM, Cox NJ, Singleton JA, Centers for disease C, et al. 2002. Prevention and control of influenza. Recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm. Rep. 51: 1-34.
- Simonsen L, Clarke MJ, Schonberger LB, Arden NH, Cox NJ, Fukuda K. 1998. Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J. Infect. Dis. 178: 53-60. https://doi.org/10.1086/515616
- Vesikari T, Pellegrini M, Karvonen A, Groth N, Borkowski A, O'Hagan DT, et al. 2009. Enhanced immunogenicity of seasonal influenza vaccines in young children using MF59 adjuvant. Pediatr. Infect. Dis. J. 28: 563-571. https://doi.org/10.1097/INF.0b013e31819d6394
- McElhaney JE, Beran J, Devaster JM, Esen M, Launay O, Leroux-Roels G, et al. 2013. AS03-adjuvanted versus non-adjuvanted inactivated trivalent influenza vaccine against seasonal influenza in elderly people: a phase 3 randomised trial. Lancet Infect. Dis. 13: 485-496. https://doi.org/10.1016/S1473-3099(13)70046-X
Cited by
- Targeting Antigens for Universal Influenza Vaccine Development vol.13, pp.6, 2021, https://doi.org/10.3390/v13060973
- Animal Models for Influenza Research: Strengths and Weaknesses vol.13, pp.6, 2021, https://doi.org/10.3390/v13061011