DOI QR코드

DOI QR Code

Influenza Chimeric Protein (3M2e-3HA2-NP) Adjuvanted with PGA/Alum Confers Cross-Protection against Heterologous Influenza A Viruses

  • Kwak, Chaewon (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Nguyen, Quyen Thi (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Jaemoo (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, Tae-Hwan (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Poo, Haryoung (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2020.11.18
  • Accepted : 2020.12.01
  • Published : 2021.02.28

Abstract

Vaccination is the most effective way to prevent influenza virus infections. However, conventional vaccines based on hemagglutinin (HA) have to be annually updated because the HA of influenza viruses constantly mutates. In this study, we produced a 3M2e-3HA2-NP chimeric protein as a vaccine antigen candidate using an Escherichia coli expression system. The vaccination of chimeric protein (15 ㎍) conferred complete protection against A/Puerto Rico/8/1934 (H1N1; PR8) in mice. It strongly induced influenza virus-specific antibody responses, cytotoxic T lymphocyte activity, and antibody-dependent cellular cytotoxicity. To spare the dose and enhance the cross-reactivity of the chimeric, we used a complex of poly-γ-glutamic acid and alum (PGA/alum) as an adjuvant. PGA/alum-adjuvanted, low-dose chimeric protein (1 or 5 ㎍) exhibited higher cross-protective effects against influenza A viruses (PR8, CA04, and H3N2) compared with those of chimeric alone or alum-adjuvanted proteins in vaccinated mice. Moreover, the depletion of CD4+ T, CD8+ T, and NK cells reduced the survival rate and efficacy of the PGA/alum-adjuvanted chimeric protein. Collectively, the vaccination of PGA/alum-adjuvanted chimeric protein induced strong protection efficacy against homologous and heterologous influenza viruses in mice, which suggests that it may be a promising universal influenza vaccine candidate.

Keywords

References

  1. Palese P. 2004. Influenza: old and new threats. Nat. Med. 10: S82-87. https://doi.org/10.1038/nm1141
  2. Te Velthuis AJ, Fodor E. 2016. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat. Rev. Microbiol. 14: 479-493. https://doi.org/10.1038/nrmicro.2016.87
  3. Chen J, Deng YM. 2009. Influenza virus antigenic variation, host antibody production and new approach to control epidemics. Virol. J. 6: 30. https://doi.org/10.1186/1743-422X-6-30
  4. World Health Organization. 2018. Influenza (Seasonal). Available from https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal). Accessed Nov. 10, 2020.
  5. Webster RG, Laver WG. 1972. The origin of pandemic influenza. Bull World Health Organ. 47: 449-452.
  6. Nichol KL, Treanor JJ. 2006. Vaccines for seasonal and pandemic influenza. J. Infect. Dis. 194 Suppl 2: S111-118. https://doi.org/10.1086/507544
  7. Gerhard W, Mozdzanowska K, Zharikova D. 2006. Prospects for universal influenza virus vaccine. Emerg. Infect. Dis. 12: 569-574. https://doi.org/10.3201/eid1204.051020
  8. Atmar RL, Keitel WA, Cate TR, Munoz FM, Ruben F, Couch RB. 2007. A dose-response evaluation of inactivated influenza vaccine given intranasally and intramuscularly to healthy young adults. Vaccine 25: 5367-5373. https://doi.org/10.1016/j.vaccine.2007.05.002
  9. Martin Mdel P, Seth S, Koutsonanos DG, Jacob J, Compans RW, Skountzou I. 2010. Adjuvanted influenza vaccine administered intradermally elicits robust long-term immune responses that confer protection from lethal challenge. PLoS One 5: e10897. https://doi.org/10.1371/journal.pone.0010897
  10. Ada GL, Jones PD. 1986. The immune response to influenza infection. Curr. Top Microbiol. Immunol. 128: 1-54. https://doi.org/10.1007/978-3-642-71272-2_1
  11. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, et al. 2004. Mapping the antigenic and genetic evolution of influenza virus. Science 305: 371-376. https://doi.org/10.1126/science.1097211
  12. van de Sandt CE, Kreijtz JH, Rimmelzwaan GF. 2012. Evasion of influenza A viruses from innate and adaptive immune responses. Viruses 4: 1438-1476. https://doi.org/10.3390/v4091438
  13. Saunders-Hastings PR, Krewski D. 2016. Reviewing the history of pandemic influenza: Understanding patterns of emergence and transmission. Pathogens. 5: 66. https://doi.org/10.3390/pathogens5040066
  14. Lee YN, Lee YT, Kim MC, Gewirtz AT, Kang SM. 2016. A novel vaccination strategy mediating the induction of lung-resident memory CD8 T cells confers heterosubtypic immunity against future pandemic influenza virus. J. Immunol. 196: 2637-2645. https://doi.org/10.4049/jimmunol.1501637
  15. Wang W, Huang B, Jiang T, Wang X, Qi X, Tan W, et al. 2014. Maximal immune response and cross protection by influenza virus nucleoprotein derived from E. coli using an optimized formulation. Virology 468-470: 265-273. https://doi.org/10.1016/j.virol.2014.08.008
  16. Steel J, Lowen AC, Wang TT, Yondola M, Gao Q, Haye K, et al. 2010. Influenza virus vaccine based on the conserved hemagglutinin stalk domain. mBio 1: e00018-10.
  17. Wang W, Huang B, Jiang T, Wang X, Qi X, Gao Y, et al. 2012. Robust immunity and heterologous protection against influenza in mice elicited by a novel recombinant NP-M2e fusion protein expressed in E. coli. PLoS One 7: e52488. https://doi.org/10.1371/journal.pone.0052488
  18. Lee YN, Kim MC, Lee YT, Hwang HS, Lee J, Kim C, et al. 2015. Cross protection against influenza A virus by yeast-expressed heterologous tandem repeat M2 extracellular proteins. PLoS One 10: e0137822. https://doi.org/10.1371/journal.pone.0137822
  19. Goff PH, Eggink D, Seibert CW, Hai R, Martinez-Gil L, Krammer F, et al. 2013. Adjuvants and immunization strategies to induce influenza virus hemagglutinin stalk antibodies. PLoS One 8: e79194. https://doi.org/10.1371/journal.pone.0079194
  20. Shim BS, Choi YK, Yun CH, Lee EG, Jeon YS, Park SM, et al. 2011. Sublingual immunization with M2-based vaccine induces broad protective immunity against influenza. PLoS One 6: e27953. https://doi.org/10.1371/journal.pone.0027953
  21. Skehel JJ, Wiley DC. 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69: 531-569. https://doi.org/10.1146/annurev.biochem.69.1.531
  22. Cross KJ, Langley WA, Russell RJ, Skehel JJ, Steinhauer DA. 2009. Composition and functions of the influenza fusion peptide. Protein Pept. Lett. 16: 766-778. https://doi.org/10.2174/092986609788681715
  23. Mallajosyula VV, Citron M, Ferrara F, Lu X, Callahan C, Heidecker GJ, et al. 2014. Influenza hemagglutinin stem-fragment immunogen elicits broadly neutralizing antibodies and confers heterologous protection. Proc. Natl. Acad. Sci. USA111: E2514-2523. https://doi.org/10.1073/pnas.1402766111
  24. Tan GS, Krammer F, Eggink D, Kongchanagul A, Moran TM, Palese P. 2012. A pan-H1 anti-hemagglutinin monoclonal antibody with potent broad-spectrum efficacy in vivo. J. Virol. 86: 6179-6188. https://doi.org/10.1128/JVI.00469-12
  25. Wohlbold TJ, Nachbagauer R, Margine I, Tan GS, Hirsh A, Krammer F. 2015. Vaccination with soluble headless hemagglutinin protects mice from challenge with divergent influenza viruses. Vaccine 33: 3314-3321. https://doi.org/10.1016/j.vaccine.2015.05.038
  26. Nabel GJ, Fauci AS. 2010. Induction of unnatural immunity: prospects for a broadly protective universal influenza vaccine. Nat. Med. 16: 1389-1391. https://doi.org/10.1038/nm1210-1389
  27. Jegaskanda S, Job ER, Kramski M, Laurie K, Isitman G, de Rose R, et al. 2013. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J. Immunol. 190: 1837-1848. https://doi.org/10.4049/jimmunol.1201574
  28. Vemula SV, Sayedahmed EE, Sambhara S, Mittal SK. 2017. Vaccine approaches conferring cross-protection against influenza viruses. Expert. Rev. Vaccines 16: 1141-1154. https://doi.org/10.1080/14760584.2017.1379396
  29. Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. 1999. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat. Med. 5: 1157-1163. https://doi.org/10.1038/13484
  30. Frace AM, Klimov AI, Rowe T, Black RA, Katz JM. 1999. Modified M2 proteins produce heterotypic immunity against influenza A virus. Vaccine 17: 2237-2244. https://doi.org/10.1016/S0264-410X(99)00005-5
  31. Slepushkin VA, Katz JM, Black RA, Gamble WC, Rota PA, Cox NJ. 1995. Protection of mice against influenza A virus challenge by vaccination with baculovirus-expressed M2 protein. Vaccine 13: 1399-1402. https://doi.org/10.1016/0264-410X(95)92777-Y
  32. Tutykhina I, Esmagambetov I, Bagaev A, Pichugin A, Lysenko A, Shcherbinin D, et al. 2018. Vaccination potential of B and T epitope-enriched NP and M2 against Influenza A viruses from different clades and hosts. PLoS One 13: e0191574. https://doi.org/10.1371/journal.pone.0191574
  33. Jameson J, Cruz J, Terajima M, Ennis FA. 1999. Human CD8+ and CD4+ T lymphocyte memory to influenza A viruses of swine and avian species. J. Immunol. 162: 7578-7583.
  34. Gianfrani C, Oseroff C, Sidney J, Chesnut RW, Sette A. 2000. Human memory CTL response specific for influenza A virus is broad and multispecific. Hum. Immunol. 61: 438-452. https://doi.org/10.1016/S0198-8859(00)00105-1
  35. Canaday DH, Gehring A, Leonard EG, Eilertson B, Schreiber JR, Harding CV, et al. 2003. T-cell hybridomas from HLA-transgenic mice as tools for analysis of human antigen processing. J. Immunol. Methods 281: 129-142. https://doi.org/10.1016/j.jim.2003.07.004
  36. Misplon JA, Lo CY, Gabbard JD, Tompkins SM, Epstein SL. 2010. Genetic control of immune responses to influenza A matrix 2 protein (M2). Vaccine 28: 5817-5827. https://doi.org/10.1016/j.vaccine.2010.06.069
  37. Mezhenskaya D, Isakova-Sivak I, Rudenko L. 2019. M2e-based universal influenza vaccines: a historical overview and new approaches to development. J. Biomed. Sci. 26: 76. https://doi.org/10.1186/s12929-019-0572-3
  38. Grebe KM, Yewdell JW, Bennink JR. 2008. Heterosubtypic immunity to influenza A virus: where do we stand? Microbes Infect. 10: 1024-1029. https://doi.org/10.1016/j.micinf.2008.07.002
  39. Rimmelzwaan GF, Fouchier RA, Osterhaus AD. 2007. Influenza virus-specific cytotoxic T lymphocytes: a correlate of protection and a basis for vaccine development. Curr. Opin. Biotechnol. 18: 529-536. https://doi.org/10.1016/j.copbio.2007.11.002
  40. Zheng M, Luo J, Chen Z. 2014. Development of universal influenza vaccines based on influenza virus M and NP genes. Infection 42: 251-262. https://doi.org/10.1007/s15010-013-0546-4
  41. Lee SY, Kang JO, Chang J. 2019. Nucleoprotein vaccine induces cross-protective cytotoxic T lymphocytes against both lineages of influenza B virus. Clin. Exp. Vaccine Res. 8: 54-63. https://doi.org/10.7774/cevr.2019.8.1.54
  42. Epstein SL, Kong WP, Misplon JA, Lo CY, Tumpey TM, Xu L, et al. 2005. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine 23: 5404-5410. https://doi.org/10.1016/j.vaccine.2005.04.047
  43. Macleod MK, David A, Jin N, Noges L, Wang J, Kappler JW, et al. 2013. Influenza nucleoprotein delivered with aluminium salts protects mice from an influenza A virus that expresses an altered nucleoprotein sequence. PLoS One 8: e61775. https://doi.org/10.1371/journal.pone.0061775
  44. Tsybalova LM, Stepanova LA, Shuklina MA, Mardanova ES, Kotlyarov RY, Potapchuk MV, et al. 2018. Combination of M2e peptide with stalk HA epitopes of influenza A virus enhances protective properties of recombinant vaccine. PLoS One 13: e0201429. https://doi.org/10.1371/journal.pone.0201429
  45. Stepanova LA, Mardanova ES, Shuklina MA, Blokhina EA, Kotlyarov RY, Potapchuk MV, et al. 2018. Flagellin-fused protein targeting M2e and HA2 induces potent humoral and T-cell responses and protects mice against various influenza viruses a subtypes. J. Biomed. Sci. 25: 33. https://doi.org/10.1186/s12929-018-0433-5
  46. Kim YJ, Lee YT, Kim MC, Lee YN, Kim KH, Ko EJ, et al. 2017. Cross-protective efficacy of influenza virus M2e containing virus-like particles is superior to hemagglutinin vaccines and variable depending on the genetic backgrounds of mice. Front. Immunol. 8: 1730. https://doi.org/10.3389/fimmu.2017.01730
  47. Nguyen QT, Kwak C, Lee WS, Kim J, Jeong J, Sung MH, et al. 2019. Poly-gamma-Glutamic acid complexed with alum induces cross-protective immunity of pandemic H1N1 vaccine. Front. Immunol. 10: 1604. https://doi.org/10.3389/fimmu.2019.01604
  48. Yang J, Shim SM, Nguyen TQ, Kim EH, Kim K, Lim YT, et al. 2017. Poly-gamma-glutamic acid/chitosan nanogel greatly enhances the efficacy and heterosubtypic cross-reactivity of H1N1 pandemic influenza vaccine. Sci. Rep. 7: 44839. https://doi.org/10.1038/srep44839
  49. Reed LJ, Muench H. 1938. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 27: 493-497. https://doi.org/10.1093/oxfordjournals.aje.a118408
  50. Yang M, Berhane Y, Salo T, Li M, Hole K, Clavijo A. 2008. Development and application of monoclonal antibodies against avian influenza virus nucleoprotein. J. Virol. Methods 147: 265-274. https://doi.org/10.1016/j.jviromet.2007.09.016
  51. Kim MC, Song JM, O E, Kwon YM, Lee YJ, Compans RW, et al. 2013. Virus-like particles containing multiple M2 extracellular domains confer improved cross-protection against various subtypes of influenza virus. Mol. Ther. 21: 485-492. https://doi.org/10.1038/mt.2012.246
  52. Asthagiri Arunkumar G, Ioannou A, Wohlbold TJ, Meade P, Aslam S, Amanat F, et al. 2019. Broadly cross-reactive, nonneutralizing antibodies against influenza B Virus hemagglutinin demonstrate effector function-dependent protection against lethal viral challenge in mice. J Virol. 93: e01696-18.
  53. Park SJ, Si YJ, Kim J, Song MS, Kim SM, Kim EH, et al. 2016. Cross-protective efficacies of highly-pathogenic avian influenza H5N1 vaccines against a recent H5N8 virus. Virology 498: 36-43. https://doi.org/10.1016/j.virol.2016.08.010
  54. Jegaskanda S, Weinfurter JT, Friedrich TC, Kent SJ. 2013. Antibody-dependent cellular cytotoxicity is associated with control of pandemic H1N1 influenza virus infection of macaques. J. Virol. 87: 5512-5522. https://doi.org/10.1128/JVI.03030-12
  55. Wang TT, Tan GS, Hai R, Pica N, Ngai L, Ekiert DC, et al. 2010. Vaccination with a synthetic peptide from the influenza virus hemagglutinin provides protection against distinct viral subtypes. Proc. Natl. Acad. Sci. USA 107: 18979-18984. https://doi.org/10.1073/pnas.1013387107
  56. DiLillo DJ, Tan GS, Palese P, Ravetch JV. 2014. Broadly neutralizing hemagglutinin stalk-specific antibodies require FcgammaR interactions for protection against influenza virus in vivo. Nat. Med. 20: 143-151. https://doi.org/10.1038/nm.3443
  57. Black RA, Rota PA, Gorodkova N, Klenk HD, Kendal AP. 1993. Antibody response to the M2 protein of influenza A virus expressed in insect cells. J. Gen. Virol. 74 (Pt 1): 143-146. https://doi.org/10.1099/0022-1317-74-1-143
  58. Feng J, Zhang M, Mozdzanowska K, Zharikova D, Hoff H, Wunner W, et al. 2006. Influenza A virus infection engenders a poor antibody response against the ectodomain of matrix protein 2. Virol. J. 3: 102. https://doi.org/10.1186/1743-422X-3-102
  59. Liu W, Li H, Chen YH. 2003. N-terminus of M2 protein could induce antibodies with inhibitory activity against influenza virus replication. FEMS Immunol. Med. Microbiol. 35: 141-146. https://doi.org/10.1016/S0928-8244(03)00009-9
  60. De Filette M, Ramne A, Birkett A, Lycke N, Lowenadler B, Min Jou W, et al. 2006. The universal influenza vaccine M2e-HBc administered intranasally in combination with the adjuvant CTA1-DD provides complete protection. Vaccine 24: 544-551. https://doi.org/10.1016/j.vaccine.2005.08.061
  61. Yang P, Wang W, Gu H, Li Z, Zhang K, Wang Z, et al. 2014. Protection against influenza H7N9 virus challenge with a recombinant NP-M1-HSP60 protein vaccine construct in BALB/c mice. Antiviral Res. 111: 1-7. https://doi.org/10.1016/j.antiviral.2014.08.008
  62. Ameghi A, Pilehvar-Soltanahmadi Y, Baradaran B, Barzegar A, Taghizadeh M, Zarghami N, et al. 2016. Protective immunity against homologous and heterologous influenza virus lethal challenge by immunization with new recombinant chimeric HA2-M2e fusion protein in BALB/C mice. Viral. Immunol. 29: 228-234. https://doi.org/10.1089/vim.2015.0050
  63. Smalls-Mantey A, Doria-Rose N, Klein R, Patamawenu A, Migueles SA, Ko SY, et al. 2012. Antibody-dependent cellular cytotoxicity against primary HIV-infected CD4+ T cells is directly associated with the magnitude of surface IgG binding. J. Virol. 86: 8672-8680. https://doi.org/10.1128/JVI.00287-12
  64. Lai J, Choo JAL, Tan WJ, Too CT, Oo MZ, Suter MA, et al. 2017. TCR-like antibodies mediate complement and antibody-dependent cellular cytotoxicity against Epstein-Barr virus-transformed B lymphoblastoid cells expressing different HLA-A*02 microvariants. Sci. Rep. 7: 9923. https://doi.org/10.1038/s41598-017-10265-6
  65. He W, Tan GS, Mullarkey CE, Lee AJ, Lam MM, Krammer F, et al. 2016. Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus. Proc. Natl. Acad. Sci. USA 113: 11931-11936. https://doi.org/10.1073/pnas.1609316113
  66. Allan W, Tabi Z, Cleary A, Doherty PC. 1990. Cellular events in the lymph node and lung of mice with influenza. Consequences of depleting CD4+ T cells. J. Immunol. 144: 3980-3986.
  67. Doherty PC, Topham DJ, Tripp RA, Cardin RD, Brooks JW, Stevenson PG. 1997. Effector CD4+ and CD8+ T-cell mechanisms in the control of respiratory virus infections. Immunol. Rev. 159: 105-117. https://doi.org/10.1111/j.1600-065X.1997.tb01010.x
  68. Eichelberger MC, Wang ML, Allan W, Webster RG, Doherty PC. 1991. Influenza virus RNA in the lung and lymphoid tissue of immunologically intact and CD4-depleted mice. J. Gen. Virol. 72 (Pt 7): 1695-1698. https://doi.org/10.1099/0022-1317-72-7-1695
  69. Bridges CB, Fukuda K, Uyeki TM, Cox NJ, Singleton JA, Centers for disease C, et al. 2002. Prevention and control of influenza. Recommendations of the advisory committee on immunization practices (ACIP). MMWR Recomm. Rep. 51: 1-34.
  70. Simonsen L, Clarke MJ, Schonberger LB, Arden NH, Cox NJ, Fukuda K. 1998. Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J. Infect. Dis. 178: 53-60. https://doi.org/10.1086/515616
  71. Vesikari T, Pellegrini M, Karvonen A, Groth N, Borkowski A, O'Hagan DT, et al. 2009. Enhanced immunogenicity of seasonal influenza vaccines in young children using MF59 adjuvant. Pediatr. Infect. Dis. J. 28: 563-571. https://doi.org/10.1097/INF.0b013e31819d6394
  72. McElhaney JE, Beran J, Devaster JM, Esen M, Launay O, Leroux-Roels G, et al. 2013. AS03-adjuvanted versus non-adjuvanted inactivated trivalent influenza vaccine against seasonal influenza in elderly people: a phase 3 randomised trial. Lancet Infect. Dis. 13: 485-496. https://doi.org/10.1016/S1473-3099(13)70046-X

Cited by

  1. Targeting Antigens for Universal Influenza Vaccine Development vol.13, pp.6, 2021, https://doi.org/10.3390/v13060973
  2. Animal Models for Influenza Research: Strengths and Weaknesses vol.13, pp.6, 2021, https://doi.org/10.3390/v13061011